基于轨迹预测的车辆辅助数据传输

R. Sousa, A. Boukerche, A. Loureiro
{"title":"基于轨迹预测的车辆辅助数据传输","authors":"R. Sousa, A. Boukerche, A. Loureiro","doi":"10.1109/GLOBECOM48099.2022.10001329","DOIUrl":null,"url":null,"abstract":"This work proposes a novel vehicle-assisted data delivery algorithm called VDDTP. VDDTP creates an extended trajectory model and uses predicted road-network constrained trajectories to calculate packet delivery probabilities. Next, it applies the predicted trajectories and some proposed heuristics in a data forwarding strategy to improve the vehicular network's global metrics (i.e., delivery ratio, communication overhead, and delivery delay). We perform extensive experiments using a real-world and large-scale trajectory dataset for evaluating vehicular network applications. The results demonstrate the algorithm's ability to improve the global metrics compared to related work.","PeriodicalId":313199,"journal":{"name":"GLOBECOM 2022 - 2022 IEEE Global Communications Conference","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vehicle-Assisted Data Delivery Based on Trajectory Prediction\",\"authors\":\"R. Sousa, A. Boukerche, A. Loureiro\",\"doi\":\"10.1109/GLOBECOM48099.2022.10001329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work proposes a novel vehicle-assisted data delivery algorithm called VDDTP. VDDTP creates an extended trajectory model and uses predicted road-network constrained trajectories to calculate packet delivery probabilities. Next, it applies the predicted trajectories and some proposed heuristics in a data forwarding strategy to improve the vehicular network's global metrics (i.e., delivery ratio, communication overhead, and delivery delay). We perform extensive experiments using a real-world and large-scale trajectory dataset for evaluating vehicular network applications. The results demonstrate the algorithm's ability to improve the global metrics compared to related work.\",\"PeriodicalId\":313199,\"journal\":{\"name\":\"GLOBECOM 2022 - 2022 IEEE Global Communications Conference\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GLOBECOM 2022 - 2022 IEEE Global Communications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOBECOM48099.2022.10001329\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GLOBECOM 2022 - 2022 IEEE Global Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBECOM48099.2022.10001329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作提出了一种新的车辆辅助数据传输算法,称为VDDTP。VDDTP创建了一个扩展的轨迹模型,并使用预测的路网约束轨迹来计算包的传递概率。接下来,它将预测轨迹和一些提出的启发式方法应用于数据转发策略中,以改善车辆网络的全局指标(即交付率,通信开销和交付延迟)。我们使用真实世界和大规模轨迹数据集进行了广泛的实验,以评估车辆网络应用。结果表明,与相关工作相比,该算法能够改善全局指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vehicle-Assisted Data Delivery Based on Trajectory Prediction
This work proposes a novel vehicle-assisted data delivery algorithm called VDDTP. VDDTP creates an extended trajectory model and uses predicted road-network constrained trajectories to calculate packet delivery probabilities. Next, it applies the predicted trajectories and some proposed heuristics in a data forwarding strategy to improve the vehicular network's global metrics (i.e., delivery ratio, communication overhead, and delivery delay). We perform extensive experiments using a real-world and large-scale trajectory dataset for evaluating vehicular network applications. The results demonstrate the algorithm's ability to improve the global metrics compared to related work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信