{"title":"降低网络物理系统建模和仿真复杂性的框架","authors":"N. Zompakis, K. Siozios","doi":"10.1109/SAMOS.2015.7363699","DOIUrl":null,"url":null,"abstract":"As systems continue to evolve they rely less on human decision-making and more on computational intelligence. This trend in conjunction to the available technologies for providing advanced sensing, measurement, process control, and communication leads us towards the new field of Cyber-Physical System (CPS). Although these systems exhibit remarkable characteristics, the increased complexity imposed by numerous components and services makes their design extremely difficult. This paper proposes a software-supported framework for reducing the design complexity regarding the modeling, as well as the simulation of CPS. For this purpose, a novel technique based on system scenarios is applied. Evaluation results prove the effectiveness of introduced framework, as we achieve to reduce mentionable the modeling and simulation complexity with a controllable overhead in accuracy.","PeriodicalId":346802,"journal":{"name":"2015 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS)","volume":"175 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A framework for reducing the modeling and simulation complexity of Cyberphysical Systems\",\"authors\":\"N. Zompakis, K. Siozios\",\"doi\":\"10.1109/SAMOS.2015.7363699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As systems continue to evolve they rely less on human decision-making and more on computational intelligence. This trend in conjunction to the available technologies for providing advanced sensing, measurement, process control, and communication leads us towards the new field of Cyber-Physical System (CPS). Although these systems exhibit remarkable characteristics, the increased complexity imposed by numerous components and services makes their design extremely difficult. This paper proposes a software-supported framework for reducing the design complexity regarding the modeling, as well as the simulation of CPS. For this purpose, a novel technique based on system scenarios is applied. Evaluation results prove the effectiveness of introduced framework, as we achieve to reduce mentionable the modeling and simulation complexity with a controllable overhead in accuracy.\",\"PeriodicalId\":346802,\"journal\":{\"name\":\"2015 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS)\",\"volume\":\"175 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAMOS.2015.7363699\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMOS.2015.7363699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A framework for reducing the modeling and simulation complexity of Cyberphysical Systems
As systems continue to evolve they rely less on human decision-making and more on computational intelligence. This trend in conjunction to the available technologies for providing advanced sensing, measurement, process control, and communication leads us towards the new field of Cyber-Physical System (CPS). Although these systems exhibit remarkable characteristics, the increased complexity imposed by numerous components and services makes their design extremely difficult. This paper proposes a software-supported framework for reducing the design complexity regarding the modeling, as well as the simulation of CPS. For this purpose, a novel technique based on system scenarios is applied. Evaluation results prove the effectiveness of introduced framework, as we achieve to reduce mentionable the modeling and simulation complexity with a controllable overhead in accuracy.