朝着以集合为基础的结果多样化发展

J. A. Akinyemi, C. Clarke, M. Kolla
{"title":"朝着以集合为基础的结果多样化发展","authors":"J. A. Akinyemi, C. Clarke, M. Kolla","doi":"10.5555/1937055.1937105","DOIUrl":null,"url":null,"abstract":"We present a method that introduces diversity into document retrieval using clusters of top-m terms obtained from the top-k retrieved documents through pseudo-relevance feedback. Terms from each cluster are used to automatically expand the original query. We evaluate the effectiveness of our method using a non-traditional effectiveness evaluation method, which directly measures the level of diversification by computing the cosine similarity between top-k retrieved documents based on (i) the original query and (ii) the expanded queries. Our results indicate that we can increase diversity without compromising retrieval quality.","PeriodicalId":120472,"journal":{"name":"RIAO Conference","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Towards a collection-based results diversification\",\"authors\":\"J. A. Akinyemi, C. Clarke, M. Kolla\",\"doi\":\"10.5555/1937055.1937105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a method that introduces diversity into document retrieval using clusters of top-m terms obtained from the top-k retrieved documents through pseudo-relevance feedback. Terms from each cluster are used to automatically expand the original query. We evaluate the effectiveness of our method using a non-traditional effectiveness evaluation method, which directly measures the level of diversification by computing the cosine similarity between top-k retrieved documents based on (i) the original query and (ii) the expanded queries. Our results indicate that we can increase diversity without compromising retrieval quality.\",\"PeriodicalId\":120472,\"journal\":{\"name\":\"RIAO Conference\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RIAO Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5555/1937055.1937105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RIAO Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5555/1937055.1937105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们提出了一种通过伪相关反馈从top-k检索文档中获得top-m项的聚类,将多样性引入文档检索的方法。来自每个集群的术语用于自动扩展原始查询。我们使用一种非传统的有效性评估方法来评估我们方法的有效性,该方法通过计算基于(i)原始查询和(ii)扩展查询的top-k检索文档之间的余弦相似性来直接测量多样化水平。我们的结果表明,我们可以在不影响检索质量的情况下增加多样性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards a collection-based results diversification
We present a method that introduces diversity into document retrieval using clusters of top-m terms obtained from the top-k retrieved documents through pseudo-relevance feedback. Terms from each cluster are used to automatically expand the original query. We evaluate the effectiveness of our method using a non-traditional effectiveness evaluation method, which directly measures the level of diversification by computing the cosine similarity between top-k retrieved documents based on (i) the original query and (ii) the expanded queries. Our results indicate that we can increase diversity without compromising retrieval quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信