基于可靠性驱动的电力系统动态安全评估智能系统

Ruidong Liu, G. Verbič, Yan Xu
{"title":"基于可靠性驱动的电力系统动态安全评估智能系统","authors":"Ruidong Liu, G. Verbič, Yan Xu","doi":"10.1109/AUPEC.2017.8282442","DOIUrl":null,"url":null,"abstract":"Dynamic security assessment provides system operators with vital information for possible preventive or emergency control to prevent security problems. In some cases, power system topology change deteriorates intelligent system-based online stability assessment performance. In this paper, we propose a new online assessment scheme to improve classification performance reliability of dynamic transient stability assessment. In the new scheme, we use an intelligent system consisting an ensemble of neural networks based on extreme learning machine. A new feature selection algorithm combining filter type method RRelief-F and wrapper type method Sequential Floating Forward Selection is proposed. Boosting learning algorithm is used in intelligent system training process which leads to higher classification accuracy. Moreover, we propose a new classification rule using weighted outputs of predictors in the ensemble helps to achieve 100% transient stability prediction in our case study.","PeriodicalId":155608,"journal":{"name":"2017 Australasian Universities Power Engineering Conference (AUPEC)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A new reliability-driven intelligent system for power system dynamic security assessment\",\"authors\":\"Ruidong Liu, G. Verbič, Yan Xu\",\"doi\":\"10.1109/AUPEC.2017.8282442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamic security assessment provides system operators with vital information for possible preventive or emergency control to prevent security problems. In some cases, power system topology change deteriorates intelligent system-based online stability assessment performance. In this paper, we propose a new online assessment scheme to improve classification performance reliability of dynamic transient stability assessment. In the new scheme, we use an intelligent system consisting an ensemble of neural networks based on extreme learning machine. A new feature selection algorithm combining filter type method RRelief-F and wrapper type method Sequential Floating Forward Selection is proposed. Boosting learning algorithm is used in intelligent system training process which leads to higher classification accuracy. Moreover, we propose a new classification rule using weighted outputs of predictors in the ensemble helps to achieve 100% transient stability prediction in our case study.\",\"PeriodicalId\":155608,\"journal\":{\"name\":\"2017 Australasian Universities Power Engineering Conference (AUPEC)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Australasian Universities Power Engineering Conference (AUPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AUPEC.2017.8282442\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Australasian Universities Power Engineering Conference (AUPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AUPEC.2017.8282442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

动态安全评估为系统操作人员提供重要的信息,为可能的预防或紧急控制提供依据,防止安全问题的发生。在某些情况下,电力系统拓扑变化会影响基于智能系统的在线稳定性评估性能。本文提出了一种新的在线评估方案,以提高动态暂态稳定评估的分类性能可靠性。在新方案中,我们采用了一种基于极限学习机的神经网络集成智能系统。提出了一种将滤波型RRelief-F和包装型顺序浮动前向选择相结合的特征选择算法。在智能系统训练过程中采用Boosting学习算法,提高了分类精度。此外,我们提出了一种新的分类规则,使用集合中预测器的加权输出,有助于在我们的案例研究中实现100%的暂态稳定预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new reliability-driven intelligent system for power system dynamic security assessment
Dynamic security assessment provides system operators with vital information for possible preventive or emergency control to prevent security problems. In some cases, power system topology change deteriorates intelligent system-based online stability assessment performance. In this paper, we propose a new online assessment scheme to improve classification performance reliability of dynamic transient stability assessment. In the new scheme, we use an intelligent system consisting an ensemble of neural networks based on extreme learning machine. A new feature selection algorithm combining filter type method RRelief-F and wrapper type method Sequential Floating Forward Selection is proposed. Boosting learning algorithm is used in intelligent system training process which leads to higher classification accuracy. Moreover, we propose a new classification rule using weighted outputs of predictors in the ensemble helps to achieve 100% transient stability prediction in our case study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信