局部特征描述符的注意引导不变性选择

Jiapeng Li, Ge Li, Thomas H. Li
{"title":"局部特征描述符的注意引导不变性选择","authors":"Jiapeng Li, Ge Li, Thomas H. Li","doi":"10.1109/icassp43922.2022.9746419","DOIUrl":null,"url":null,"abstract":"To copy with the extreme variations of illumination and rotation in the real world, popular descriptors have captured more invariance recently, but more invariance makes descriptors less informative. So this paper designs a unique attention guided framework (named AISLFD) to select appropriate invariance for local feature descriptors, which boosts the performance of descriptors even in the scenes with extreme changes. Specifically, we first explore an efficient multi-scale feature extraction module that provides our local descriptors with more useful information. Besides, we propose a novel parallel self-attention module to get meta descriptors with the global receptive field, which guides the invariance selection more correctly. Compared with state-of-the-art methods, our method achieves competitive performance through sufficient experiments.","PeriodicalId":272439,"journal":{"name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Attention Guided Invariance Selection for Local Feature Descriptors\",\"authors\":\"Jiapeng Li, Ge Li, Thomas H. Li\",\"doi\":\"10.1109/icassp43922.2022.9746419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To copy with the extreme variations of illumination and rotation in the real world, popular descriptors have captured more invariance recently, but more invariance makes descriptors less informative. So this paper designs a unique attention guided framework (named AISLFD) to select appropriate invariance for local feature descriptors, which boosts the performance of descriptors even in the scenes with extreme changes. Specifically, we first explore an efficient multi-scale feature extraction module that provides our local descriptors with more useful information. Besides, we propose a novel parallel self-attention module to get meta descriptors with the global receptive field, which guides the invariance selection more correctly. Compared with state-of-the-art methods, our method achieves competitive performance through sufficient experiments.\",\"PeriodicalId\":272439,\"journal\":{\"name\":\"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icassp43922.2022.9746419\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icassp43922.2022.9746419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

为了复制现实世界中光照和旋转的极端变化,最近流行的描述符捕获了更多的不变性,但更多的不变性使描述符的信息量减少。因此,本文设计了一种独特的注意力引导框架(AISLFD),为局部特征描述子选择合适的不变性,从而在极端变化的场景下提高描述子的性能。具体来说,我们首先探索了一个高效的多尺度特征提取模块,为我们的局部描述符提供更多有用的信息。此外,我们提出了一种新的并行自注意模块来获得具有全局接受场的元描述符,从而更准确地指导不变性选择。与目前最先进的方法相比,我们的方法通过充分的实验获得了具有竞争力的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Attention Guided Invariance Selection for Local Feature Descriptors
To copy with the extreme variations of illumination and rotation in the real world, popular descriptors have captured more invariance recently, but more invariance makes descriptors less informative. So this paper designs a unique attention guided framework (named AISLFD) to select appropriate invariance for local feature descriptors, which boosts the performance of descriptors even in the scenes with extreme changes. Specifically, we first explore an efficient multi-scale feature extraction module that provides our local descriptors with more useful information. Besides, we propose a novel parallel self-attention module to get meta descriptors with the global receptive field, which guides the invariance selection more correctly. Compared with state-of-the-art methods, our method achieves competitive performance through sufficient experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信