基于加权自回归HMM的语音识别方法

Yamin Yang, Chaoli Wang, Y. Sun
{"title":"基于加权自回归HMM的语音识别方法","authors":"Yamin Yang, Chaoli Wang, Y. Sun","doi":"10.1109/PIC.2010.5687878","DOIUrl":null,"url":null,"abstract":"For non-independent speech recognition, in order to solve the problem of the assumption that the observation vectors are independent and the amount of data is small in Hidden Markov Model, a weighted autoregressive Hidden Markov Model was presented based on the Continuous Hidden Markov Model in this paper. The weighted autoregressive process was exploited to extract the observation vector, which is more suitable for recognition of the actual voice signals with strong random characteristic.","PeriodicalId":142910,"journal":{"name":"2010 IEEE International Conference on Progress in Informatics and Computing","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Speech recognition method based on weighed autoregressive HMM\",\"authors\":\"Yamin Yang, Chaoli Wang, Y. Sun\",\"doi\":\"10.1109/PIC.2010.5687878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For non-independent speech recognition, in order to solve the problem of the assumption that the observation vectors are independent and the amount of data is small in Hidden Markov Model, a weighted autoregressive Hidden Markov Model was presented based on the Continuous Hidden Markov Model in this paper. The weighted autoregressive process was exploited to extract the observation vector, which is more suitable for recognition of the actual voice signals with strong random characteristic.\",\"PeriodicalId\":142910,\"journal\":{\"name\":\"2010 IEEE International Conference on Progress in Informatics and Computing\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Progress in Informatics and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PIC.2010.5687878\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Progress in Informatics and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIC.2010.5687878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

对于非独立语音识别,为了解决隐马尔可夫模型中观测向量独立且数据量小的假设问题,本文在连续隐马尔可夫模型的基础上提出了一种加权自回归隐马尔可夫模型。利用加权自回归过程提取观测向量,更适合于对具有强随机特征的实际语音信号的识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Speech recognition method based on weighed autoregressive HMM
For non-independent speech recognition, in order to solve the problem of the assumption that the observation vectors are independent and the amount of data is small in Hidden Markov Model, a weighted autoregressive Hidden Markov Model was presented based on the Continuous Hidden Markov Model in this paper. The weighted autoregressive process was exploited to extract the observation vector, which is more suitable for recognition of the actual voice signals with strong random characteristic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信