使用DNA样本进行执法应用的3D面部生物识别验证

Niraj Pandkar, Teng-Sheng Moh, Mark Barash
{"title":"使用DNA样本进行执法应用的3D面部生物识别验证","authors":"Niraj Pandkar, Teng-Sheng Moh, Mark Barash","doi":"10.1109/WI-IAT55865.2022.00114","DOIUrl":null,"url":null,"abstract":"A large majority of violent crimes such as homicides, sexual assaults, and missing person cases are not solved within a reasonable timeframe and become cold cases. The ability to predict a person’s facial appearance from a DNA sample may generate important investigative leads and provide an unprecedented advancement in criminal investigations. To achieve the above goal, it is first essential to substantiate, model and measure the intrinsic relationship between the genomic markers and phenotypic features. In the first step, we have standardized the 3D face scans using a widely used 3D data format - CoMA. The standardization was followed by its projection into a low-dimensional latent embedding space. The second step was to reduce the dimensionality of the genetic space. The dimensionality reduction was achieved by performing Principal Component Analysis on the genomic markers to generate compact genomic properties. A simple multi-layer perceptron was trained to classify an ensemble of facial embeddings and genomic properties into genuine and imposter pairings. The classification model could match the DNA with the given 3D face with an average Area Under the Curve score of 0.73. The introduction of hand-picked genomic markers was an important contribution toward improving the final AUC score. Furthermore, results indicated that incorporating additional phenotypical properties such as sex and age leads to better verification. Thus, this study represents an important milestone toward building a functional machine learning pipeline capable of predicting facial appearance and other visible traits from a DNA sample.","PeriodicalId":345445,"journal":{"name":"2022 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT)","volume":"21 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"3D Facial Biometric Verification Using a DNA Sample for Law Enforcement Applications\",\"authors\":\"Niraj Pandkar, Teng-Sheng Moh, Mark Barash\",\"doi\":\"10.1109/WI-IAT55865.2022.00114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A large majority of violent crimes such as homicides, sexual assaults, and missing person cases are not solved within a reasonable timeframe and become cold cases. The ability to predict a person’s facial appearance from a DNA sample may generate important investigative leads and provide an unprecedented advancement in criminal investigations. To achieve the above goal, it is first essential to substantiate, model and measure the intrinsic relationship between the genomic markers and phenotypic features. In the first step, we have standardized the 3D face scans using a widely used 3D data format - CoMA. The standardization was followed by its projection into a low-dimensional latent embedding space. The second step was to reduce the dimensionality of the genetic space. The dimensionality reduction was achieved by performing Principal Component Analysis on the genomic markers to generate compact genomic properties. A simple multi-layer perceptron was trained to classify an ensemble of facial embeddings and genomic properties into genuine and imposter pairings. The classification model could match the DNA with the given 3D face with an average Area Under the Curve score of 0.73. The introduction of hand-picked genomic markers was an important contribution toward improving the final AUC score. Furthermore, results indicated that incorporating additional phenotypical properties such as sex and age leads to better verification. Thus, this study represents an important milestone toward building a functional machine learning pipeline capable of predicting facial appearance and other visible traits from a DNA sample.\",\"PeriodicalId\":345445,\"journal\":{\"name\":\"2022 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT)\",\"volume\":\"21 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI-IAT55865.2022.00114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT55865.2022.00114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

杀人案、性侵案、失踪案等暴力犯罪在合理时间内得不到解决,成为悬案的绝大部分。从DNA样本中预测一个人的面部特征的能力可能会产生重要的调查线索,并为刑事调查提供前所未有的进步。为了实现上述目标,首先必须证实、建模和测量基因组标记与表型特征之间的内在关系。在第一步中,我们使用广泛使用的3D数据格式- CoMA对3D人脸扫描进行了标准化。标准化之后,将其投影到低维潜在嵌入空间中。第二步是降低遗传空间的维数。通过对基因组标记进行主成分分析来实现降维,从而产生紧凑的基因组特性。训练一个简单的多层感知器,将面部嵌入和基因组属性的集合分类为真实的和冒名顶替的配对。该分类模型可以将DNA与给定的3D人脸匹配,平均曲线下面积得分为0.73。引入精挑细选的基因组标记是提高最终AUC分数的重要贡献。此外,结果表明,纳入额外的表型特性,如性别和年龄导致更好的验证。因此,这项研究代表了构建功能性机器学习管道的重要里程碑,该管道能够从DNA样本中预测面部外观和其他可见特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D Facial Biometric Verification Using a DNA Sample for Law Enforcement Applications
A large majority of violent crimes such as homicides, sexual assaults, and missing person cases are not solved within a reasonable timeframe and become cold cases. The ability to predict a person’s facial appearance from a DNA sample may generate important investigative leads and provide an unprecedented advancement in criminal investigations. To achieve the above goal, it is first essential to substantiate, model and measure the intrinsic relationship between the genomic markers and phenotypic features. In the first step, we have standardized the 3D face scans using a widely used 3D data format - CoMA. The standardization was followed by its projection into a low-dimensional latent embedding space. The second step was to reduce the dimensionality of the genetic space. The dimensionality reduction was achieved by performing Principal Component Analysis on the genomic markers to generate compact genomic properties. A simple multi-layer perceptron was trained to classify an ensemble of facial embeddings and genomic properties into genuine and imposter pairings. The classification model could match the DNA with the given 3D face with an average Area Under the Curve score of 0.73. The introduction of hand-picked genomic markers was an important contribution toward improving the final AUC score. Furthermore, results indicated that incorporating additional phenotypical properties such as sex and age leads to better verification. Thus, this study represents an important milestone toward building a functional machine learning pipeline capable of predicting facial appearance and other visible traits from a DNA sample.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信