{"title":"健康相关Twitter数据的迁移学习","authors":"A. Dirkson, S. Verberne","doi":"10.18653/v1/W19-3212","DOIUrl":null,"url":null,"abstract":"Transfer learning is promising for many NLP applications, especially in tasks with limited labeled data. This paper describes the methods developed by team TMRLeiden for the 2019 Social Media Mining for Health Applications (SMM4H) Shared Task. Our methods use state-of-the-art transfer learning methods to classify, extract and normalise adverse drug effects (ADRs) and to classify personal health mentions from health-related tweets. The code and fine-tuned models are publicly available.","PeriodicalId":265570,"journal":{"name":"Proceedings of the Fourth Social Media Mining for Health Applications (#SMM4H) Workshop & Shared Task","volume":"365 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Transfer Learning for Health-related Twitter Data\",\"authors\":\"A. Dirkson, S. Verberne\",\"doi\":\"10.18653/v1/W19-3212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transfer learning is promising for many NLP applications, especially in tasks with limited labeled data. This paper describes the methods developed by team TMRLeiden for the 2019 Social Media Mining for Health Applications (SMM4H) Shared Task. Our methods use state-of-the-art transfer learning methods to classify, extract and normalise adverse drug effects (ADRs) and to classify personal health mentions from health-related tweets. The code and fine-tuned models are publicly available.\",\"PeriodicalId\":265570,\"journal\":{\"name\":\"Proceedings of the Fourth Social Media Mining for Health Applications (#SMM4H) Workshop & Shared Task\",\"volume\":\"365 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fourth Social Media Mining for Health Applications (#SMM4H) Workshop & Shared Task\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/W19-3212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fourth Social Media Mining for Health Applications (#SMM4H) Workshop & Shared Task","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W19-3212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Transfer learning is promising for many NLP applications, especially in tasks with limited labeled data. This paper describes the methods developed by team TMRLeiden for the 2019 Social Media Mining for Health Applications (SMM4H) Shared Task. Our methods use state-of-the-art transfer learning methods to classify, extract and normalise adverse drug effects (ADRs) and to classify personal health mentions from health-related tweets. The code and fine-tuned models are publicly available.