基于子空间约束状态校正的自适应状态估计

A. Goel, D. Bernstein
{"title":"基于子空间约束状态校正的自适应状态估计","authors":"A. Goel, D. Bernstein","doi":"10.23919/acc45564.2020.9147916","DOIUrl":null,"url":null,"abstract":"In many applications of state estimation, it is efficient to confine the output-error injection to a prescribed subspace of the state space. This paper considers this problem by applying the unscented Kalman filter and retrospective cost state estimator (RCSE) to linear and nonlinear systems with subspace-constrained state correction. As an application of these techniques, parameter estimation is considered for linear and nonlinear systems with unknown parameters, where the output- error injection is confined to the subspace corresponding to the states representing the unknown parameters.","PeriodicalId":288450,"journal":{"name":"2020 American Control Conference (ACC)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adaptive State Estimation with Subspace-Constrained State Correction\",\"authors\":\"A. Goel, D. Bernstein\",\"doi\":\"10.23919/acc45564.2020.9147916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In many applications of state estimation, it is efficient to confine the output-error injection to a prescribed subspace of the state space. This paper considers this problem by applying the unscented Kalman filter and retrospective cost state estimator (RCSE) to linear and nonlinear systems with subspace-constrained state correction. As an application of these techniques, parameter estimation is considered for linear and nonlinear systems with unknown parameters, where the output- error injection is confined to the subspace corresponding to the states representing the unknown parameters.\",\"PeriodicalId\":288450,\"journal\":{\"name\":\"2020 American Control Conference (ACC)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/acc45564.2020.9147916\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/acc45564.2020.9147916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在许多状态估计的应用中,将输出误差注入限制在状态空间的指定子空间是有效的。本文将无气味卡尔曼滤波器和回溯代价状态估计器(RCSE)应用于具有子空间约束状态校正的线性和非线性系统,研究了这一问题。作为这些技术的一个应用,参数估计被考虑用于具有未知参数的线性和非线性系统,其中输出误差注入被限制在表示未知参数的状态对应的子空间中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive State Estimation with Subspace-Constrained State Correction
In many applications of state estimation, it is efficient to confine the output-error injection to a prescribed subspace of the state space. This paper considers this problem by applying the unscented Kalman filter and retrospective cost state estimator (RCSE) to linear and nonlinear systems with subspace-constrained state correction. As an application of these techniques, parameter estimation is considered for linear and nonlinear systems with unknown parameters, where the output- error injection is confined to the subspace corresponding to the states representing the unknown parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信