受随机和确定性扰动的无限维系统的鲁棒镇定

Kameche Amira, Kada Maissa
{"title":"受随机和确定性扰动的无限维系统的鲁棒镇定","authors":"Kameche Amira, Kada Maissa","doi":"10.1109/ICRAMI52622.2021.9585901","DOIUrl":null,"url":null,"abstract":"This paper deals with the robust stabilization of infinite dimensional systems subjected to stochastic and deterministic perturbations. First, we give conditions providing the stability of the parameterized system. Then, we investigate the maximization of the stability radius by state feedback. We establish conditions for the existence of suboptimal controllers. Using these conditions we characterize the supreme achievable stability radius via an infinite dimensional Riccati equation.","PeriodicalId":440750,"journal":{"name":"2021 International Conference on Recent Advances in Mathematics and Informatics (ICRAMI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust Stabilization of Infinite Dimensional Systems Subjected to Stochastic and Deterministic Perturbations\",\"authors\":\"Kameche Amira, Kada Maissa\",\"doi\":\"10.1109/ICRAMI52622.2021.9585901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the robust stabilization of infinite dimensional systems subjected to stochastic and deterministic perturbations. First, we give conditions providing the stability of the parameterized system. Then, we investigate the maximization of the stability radius by state feedback. We establish conditions for the existence of suboptimal controllers. Using these conditions we characterize the supreme achievable stability radius via an infinite dimensional Riccati equation.\",\"PeriodicalId\":440750,\"journal\":{\"name\":\"2021 International Conference on Recent Advances in Mathematics and Informatics (ICRAMI)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Recent Advances in Mathematics and Informatics (ICRAMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRAMI52622.2021.9585901\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Recent Advances in Mathematics and Informatics (ICRAMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRAMI52622.2021.9585901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究受随机和确定性扰动的无穷维系统的鲁棒镇定问题。首先给出了参数化系统稳定性的条件。然后,我们研究了状态反馈的稳定性半径最大化问题。建立了次优控制器存在的条件。利用这些条件,我们通过无限维里卡蒂方程描述了最高可达到的稳定半径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Stabilization of Infinite Dimensional Systems Subjected to Stochastic and Deterministic Perturbations
This paper deals with the robust stabilization of infinite dimensional systems subjected to stochastic and deterministic perturbations. First, we give conditions providing the stability of the parameterized system. Then, we investigate the maximization of the stability radius by state feedback. We establish conditions for the existence of suboptimal controllers. Using these conditions we characterize the supreme achievable stability radius via an infinite dimensional Riccati equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信