Engki Dulfitri Eha, Suwanda
{"title":"Pemodelan Fuzzy Time Series Cheng untuk Meramalkan Nilai Ekspor Migas di Indonesia","authors":"Engki Dulfitri Eha, Suwanda","doi":"10.29313/bcss.v3i2.7604","DOIUrl":null,"url":null,"abstract":"Abstract. Forecasting is useful for predicting future events which include the short, medium and long term. The data commonly used is time series data which is a collection of data that is arranged at a certain time continuously. There are several methods in the analysis of time series data, namely the traditional method (ARIMA) and Fuzzy time series. The fuzzy times series method is proven to be able to improve traditional methods such as handling data fluctuations, uncertainty of data subjectivity. With the privilege of not requiring the fulfillment of the assumption test. This thesis will discuss the Fuzzy time series cheng which is the development of the fuzzy time series chen and yu which can minimize forecasting errors. The Cheng's Fuzzy time series method has been applied to the value of Indonesia's oil and gas exports based on data for 1975-2022 with the forecast model obtained with a MAPE of 19.7668%. From the results of the forecasting model obtained in 2023 it is estimated that the value of Indonesia's oil and gas exports will be 15,215.9182 (million US$), experiencing a decrease of 803,7818 (million US$) when compared to the export value in 2022 of 16,019.7 (million US$) . \nAbstrak. Peramalan berguna untuk memprediksi kejadian yang akan datang yang meliputi jangka pendek, menengah dan panjang. Data yang biasanya digunakan adalah data deret waktu yang merupakan kumpulan data yang disusun pada waktu tertentu secara terus menerus. Ada beberapa metode dalam analisis data deret waktu yaitu metode tradisional (ARIMA) dan Fuzzy time series. Metode fuzzy times series telah terbukti dapat memperbaiki metode tradisional seperti menangani fluktuasi data, ketidakpastian subjektivitas dalam data. Dengan keistimewaan tidak membutuhkan pemenuhan uji asumsi. Dalam skripsi ini akan di bahas Fuzzy time series cheng yang merupakan pengembangan dari Fuzzy time series chen dan yu yang dapat memperkecil kekeliruan peramalan. Metode Fuzzy time series cheng telah di terapkan pada nilai ekspor migas Indonesia berdasarkan data dari tahun 1975-2022 dengan diperoleh model ramalan dengan MAPE sebesar 19.7668%. Dari hasil model peramalan yang diperoleh pada tahun 2023 diperkirakan nilai ekspor migas Indonesia sebesar 15,215.9182(juta US$), mengalami penurunan sebesar 803.7818 (juta US$) jika dibandingkan dengan nilai ekspor tahun 2022 sebesar 16,019.7 (juta US$).","PeriodicalId":337947,"journal":{"name":"Bandung Conference Series: Statistics","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bandung Conference Series: Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29313/bcss.v3i2.7604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要。预测有助于预测未来事件,包括短期、中期和长期事件。常用的数据是时间序列数据,它是在一定时间连续排列的数据集合。时间序列数据的分析有几种方法,即传统的ARIMA方法和模糊时间序列方法。事实证明,模糊时间序列方法能够改进传统方法处理数据波动、数据主观性不确定性等问题。其特权是不需要完成假设测试。本文将讨论模糊时间序列cheng,它是模糊时间序列chen和yu的发展,可以最小化预测误差。基于1975-2022年的数据,将Cheng的模糊时间序列方法应用于印度尼西亚的石油和天然气出口值,得到的预测模型的MAPE为19.7668%。根据2023年获得的预测模型结果,估计印度尼西亚的石油和天然气出口价值将为15,21,59182(百万美元),与2022年的出口价值16,0197(百万美元)相比,减少了803,7818(百万美元)。Abstrak。Peramalan berguna untuk memprediksi kejadian yang akan datang yang meliputi jangka pendek, menengah dan panjang。数据yang biasanya digunakan adalah数据deret waktu yang merupakan kumpulan数据yang disusun pada waktu tertentu secara terus meneras。Ada beberapa方法dalam分析数据采用waktu yitu方法传统(ARIMA)和模糊时间序列。方法采用模糊时间序列法,采用传统离散时间序列法,采用离散时间序列法,采用离散时间序列法,采用离散时间序列法,采用离散时间序列法,采用离散时间序列法。邓安,中国,中国,中国,中国,中国,中国,中国。模糊时间序列cheng yang merupakan pengembangan dari chen dan yu yang dapat memperkecil kekeliruan peramalan。方法模糊时间序列cheng telah di terapkan pada nilai ekspor miga印度尼西亚berdasarkan数据达达1975-2022年dengan diperoleh模型ramalan dengan MAPE sebesar 19.7668%。Dari hasil模型peramalan yang diperoleh pada tahun 2023 diperkirakan nilai ekspor migas Indonesia sebesar 15,215.9182(juta US$), mengalami penurunan sebesar 803.7818 (juta US$) jika dibandingkan dengan nilai ekspor tahun 2022 sebesar 16,019.7 (juta US$)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pemodelan Fuzzy Time Series Cheng untuk Meramalkan Nilai Ekspor Migas di Indonesia
Abstract. Forecasting is useful for predicting future events which include the short, medium and long term. The data commonly used is time series data which is a collection of data that is arranged at a certain time continuously. There are several methods in the analysis of time series data, namely the traditional method (ARIMA) and Fuzzy time series. The fuzzy times series method is proven to be able to improve traditional methods such as handling data fluctuations, uncertainty of data subjectivity. With the privilege of not requiring the fulfillment of the assumption test. This thesis will discuss the Fuzzy time series cheng which is the development of the fuzzy time series chen and yu which can minimize forecasting errors. The Cheng's Fuzzy time series method has been applied to the value of Indonesia's oil and gas exports based on data for 1975-2022 with the forecast model obtained with a MAPE of 19.7668%. From the results of the forecasting model obtained in 2023 it is estimated that the value of Indonesia's oil and gas exports will be 15,215.9182 (million US$), experiencing a decrease of 803,7818 (million US$) when compared to the export value in 2022 of 16,019.7 (million US$) . Abstrak. Peramalan berguna untuk memprediksi kejadian yang akan datang yang meliputi jangka pendek, menengah dan panjang. Data yang biasanya digunakan adalah data deret waktu yang merupakan kumpulan data yang disusun pada waktu tertentu secara terus menerus. Ada beberapa metode dalam analisis data deret waktu yaitu metode tradisional (ARIMA) dan Fuzzy time series. Metode fuzzy times series telah terbukti dapat memperbaiki metode tradisional seperti menangani fluktuasi data, ketidakpastian subjektivitas dalam data. Dengan keistimewaan tidak membutuhkan pemenuhan uji asumsi. Dalam skripsi ini akan di bahas Fuzzy time series cheng yang merupakan pengembangan dari Fuzzy time series chen dan yu yang dapat memperkecil kekeliruan peramalan. Metode Fuzzy time series cheng telah di terapkan pada nilai ekspor migas Indonesia berdasarkan data dari tahun 1975-2022 dengan diperoleh model ramalan dengan MAPE sebesar 19.7668%. Dari hasil model peramalan yang diperoleh pada tahun 2023 diperkirakan nilai ekspor migas Indonesia sebesar 15,215.9182(juta US$), mengalami penurunan sebesar 803.7818 (juta US$) jika dibandingkan dengan nilai ekspor tahun 2022 sebesar 16,019.7 (juta US$).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信