{"title":"利用混响室作为评估组件和系统性能的通用测试环境","authors":"D. Lewis","doi":"10.1109/emcsi.2018.8495191","DOIUrl":null,"url":null,"abstract":"Electromagnetic reverberation chambers have been used for many years by the Electromagnetic Compatibility (EMC) community to measure the susceptibility and emissions for various electronic components and systems. This presentation describes how statistical processes were used to reduce the uncertainty of these chambers to a level necessary for precision metrology applications. These processes were applied to the calibration of electromagnetic field probes and the assessment of antenna efficiencies. A brief comparison of traditional calibration methods employing transverse electromagnetic (TEM) cells and anechoic chambers to the new statistical reverberant environment will be shown.","PeriodicalId":120342,"journal":{"name":"2018 IEEE Symposium on Electromagnetic Compatibility, Signal Integrity and Power Integrity (EMC, SI & PI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utilizing Reverberation Chambers as a Versatile Test Environment for Assessing the Performance of Components and Systems\",\"authors\":\"D. Lewis\",\"doi\":\"10.1109/emcsi.2018.8495191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electromagnetic reverberation chambers have been used for many years by the Electromagnetic Compatibility (EMC) community to measure the susceptibility and emissions for various electronic components and systems. This presentation describes how statistical processes were used to reduce the uncertainty of these chambers to a level necessary for precision metrology applications. These processes were applied to the calibration of electromagnetic field probes and the assessment of antenna efficiencies. A brief comparison of traditional calibration methods employing transverse electromagnetic (TEM) cells and anechoic chambers to the new statistical reverberant environment will be shown.\",\"PeriodicalId\":120342,\"journal\":{\"name\":\"2018 IEEE Symposium on Electromagnetic Compatibility, Signal Integrity and Power Integrity (EMC, SI & PI)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Symposium on Electromagnetic Compatibility, Signal Integrity and Power Integrity (EMC, SI & PI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/emcsi.2018.8495191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Symposium on Electromagnetic Compatibility, Signal Integrity and Power Integrity (EMC, SI & PI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/emcsi.2018.8495191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Utilizing Reverberation Chambers as a Versatile Test Environment for Assessing the Performance of Components and Systems
Electromagnetic reverberation chambers have been used for many years by the Electromagnetic Compatibility (EMC) community to measure the susceptibility and emissions for various electronic components and systems. This presentation describes how statistical processes were used to reduce the uncertainty of these chambers to a level necessary for precision metrology applications. These processes were applied to the calibration of electromagnetic field probes and the assessment of antenna efficiencies. A brief comparison of traditional calibration methods employing transverse electromagnetic (TEM) cells and anechoic chambers to the new statistical reverberant environment will be shown.