第一类的勒贝格扩展和波雷尔扩展之间的联系,以及它们对应的原象之间的联系

V. K. Zakharov
{"title":"第一类的勒贝格扩展和波雷尔扩展之间的联系,以及它们对应的原象之间的联系","authors":"V. K. Zakharov","doi":"10.1070/IM1991V037N02ABEH002064","DOIUrl":null,"url":null,"abstract":"A new algebraic structure of a -ring with refinement and a new topological structure of an -space with cover are introduced. On the basis of them the notions of divisible hulls and surrounded coverings of certain types are introduced. With the help of these notions the Lebesgue extension and the Borel extension of the first class are given a ring characterization as divisible hulls of a certain type (Theorem 1); preimages of maximal ideals of these extensions are given a topological characterization as surrounded coverings of a certain type (Theorem 2).","PeriodicalId":159459,"journal":{"name":"Mathematics of The Ussr-izvestiya","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"CONNECTIONS BETWEEN THE LEBESGUE EXTENSION AND THE BOREL EXTENSION OF THE FIRST CLASS, AND BETWEEN THE PREIMAGES CORRESPONDING TO THEM\",\"authors\":\"V. K. Zakharov\",\"doi\":\"10.1070/IM1991V037N02ABEH002064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new algebraic structure of a -ring with refinement and a new topological structure of an -space with cover are introduced. On the basis of them the notions of divisible hulls and surrounded coverings of certain types are introduced. With the help of these notions the Lebesgue extension and the Borel extension of the first class are given a ring characterization as divisible hulls of a certain type (Theorem 1); preimages of maximal ideals of these extensions are given a topological characterization as surrounded coverings of a certain type (Theorem 2).\",\"PeriodicalId\":159459,\"journal\":{\"name\":\"Mathematics of The Ussr-izvestiya\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of The Ussr-izvestiya\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1070/IM1991V037N02ABEH002064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of The Ussr-izvestiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1070/IM1991V037N02ABEH002064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

介绍了一种新的带细化的-环代数结构和一种新的带覆盖的-空间拓扑结构。在此基础上,引入了可分船体和某些类型的包围覆盖物的概念。在这些概念的帮助下,我们给出了第一类的Lebesgue扩展和Borel扩展作为一类可分壳的环刻划(定理1);这些扩展的极大理想的原象被给定为某种类型的包围覆盖的拓扑表征(定理2)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CONNECTIONS BETWEEN THE LEBESGUE EXTENSION AND THE BOREL EXTENSION OF THE FIRST CLASS, AND BETWEEN THE PREIMAGES CORRESPONDING TO THEM
A new algebraic structure of a -ring with refinement and a new topological structure of an -space with cover are introduced. On the basis of them the notions of divisible hulls and surrounded coverings of certain types are introduced. With the help of these notions the Lebesgue extension and the Borel extension of the first class are given a ring characterization as divisible hulls of a certain type (Theorem 1); preimages of maximal ideals of these extensions are given a topological characterization as surrounded coverings of a certain type (Theorem 2).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信