{"title":"热力学","authors":"Xian Wen Ng","doi":"10.1017/9781108241625.006","DOIUrl":null,"url":null,"abstract":"COURSE OUTLINE : This course is intended for final year BSc (in Chemistry) as well as for MSc (in Chemistry) and PhD (in Chemistry) students and it is assumed that no previous knowledge of the subject is required. Moreover, this course demonstrates the form physical and statistical basis of thermodynamics by showing how the properties of macroscopic systems are direct consequences of the behaviors of their elementary constituents. Thus this course will give the students a broader spectrum of skills as well as a better understanding of the physical bases.","PeriodicalId":243279,"journal":{"name":"Nonlinear Solid Mechanics for Finite Element Analysis: Dynamics","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermodynamics\",\"authors\":\"Xian Wen Ng\",\"doi\":\"10.1017/9781108241625.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"COURSE OUTLINE : This course is intended for final year BSc (in Chemistry) as well as for MSc (in Chemistry) and PhD (in Chemistry) students and it is assumed that no previous knowledge of the subject is required. Moreover, this course demonstrates the form physical and statistical basis of thermodynamics by showing how the properties of macroscopic systems are direct consequences of the behaviors of their elementary constituents. Thus this course will give the students a broader spectrum of skills as well as a better understanding of the physical bases.\",\"PeriodicalId\":243279,\"journal\":{\"name\":\"Nonlinear Solid Mechanics for Finite Element Analysis: Dynamics\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Solid Mechanics for Finite Element Analysis: Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/9781108241625.006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Solid Mechanics for Finite Element Analysis: Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/9781108241625.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
COURSE OUTLINE : This course is intended for final year BSc (in Chemistry) as well as for MSc (in Chemistry) and PhD (in Chemistry) students and it is assumed that no previous knowledge of the subject is required. Moreover, this course demonstrates the form physical and statistical basis of thermodynamics by showing how the properties of macroscopic systems are direct consequences of the behaviors of their elementary constituents. Thus this course will give the students a broader spectrum of skills as well as a better understanding of the physical bases.