Frédéric Grandidier, R. Sabourin, M. Gilloux, C. Suen
{"title":"离散隐马尔可夫模型判别能力的先验指标","authors":"Frédéric Grandidier, R. Sabourin, M. Gilloux, C. Suen","doi":"10.1109/ICDAR.2001.953812","DOIUrl":null,"url":null,"abstract":"During the development of a hidden Markov model based handwriting recognition system, the testing phase takes a non-negligible amount of computation time. This is especially true for real application where the lexicon size is large. In order to shorten the development process, we propose an indicator of the system discrimination power. This indicator is calculated during training and its final value is obtained at the end of the training phase, without more calculation. Its definition consists of a modification of the observation probability of the validation corpus by the trained system. Some experiments were carried out and the results show clearly the correlation between this indicator and recognition rates.","PeriodicalId":277816,"journal":{"name":"Proceedings of Sixth International Conference on Document Analysis and Recognition","volume":"151 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An a priori indicator of the discrimination power of discrete hidden Markov models\",\"authors\":\"Frédéric Grandidier, R. Sabourin, M. Gilloux, C. Suen\",\"doi\":\"10.1109/ICDAR.2001.953812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During the development of a hidden Markov model based handwriting recognition system, the testing phase takes a non-negligible amount of computation time. This is especially true for real application where the lexicon size is large. In order to shorten the development process, we propose an indicator of the system discrimination power. This indicator is calculated during training and its final value is obtained at the end of the training phase, without more calculation. Its definition consists of a modification of the observation probability of the validation corpus by the trained system. Some experiments were carried out and the results show clearly the correlation between this indicator and recognition rates.\",\"PeriodicalId\":277816,\"journal\":{\"name\":\"Proceedings of Sixth International Conference on Document Analysis and Recognition\",\"volume\":\"151 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Sixth International Conference on Document Analysis and Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.2001.953812\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Sixth International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2001.953812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An a priori indicator of the discrimination power of discrete hidden Markov models
During the development of a hidden Markov model based handwriting recognition system, the testing phase takes a non-negligible amount of computation time. This is especially true for real application where the lexicon size is large. In order to shorten the development process, we propose an indicator of the system discrimination power. This indicator is calculated during training and its final value is obtained at the end of the training phase, without more calculation. Its definition consists of a modification of the observation probability of the validation corpus by the trained system. Some experiments were carried out and the results show clearly the correlation between this indicator and recognition rates.