M. Ribeiro, Jennifer Sanger, Jingxuan Zhang, Aciel Eshky, A. Wrench, Korin Richmond, S. Renals
{"title":"一个同步的多扬声器语料库,包括舌头超声成像、音频和嘴唇视频","authors":"M. Ribeiro, Jennifer Sanger, Jingxuan Zhang, Aciel Eshky, A. Wrench, Korin Richmond, S. Renals","doi":"10.1109/SLT48900.2021.9383619","DOIUrl":null,"url":null,"abstract":"We present the Tongue and Lips corpus (TaL), a multi-speaker corpus of audio, ultrasound tongue imaging, and lip videos. TaL consists of two parts: TaL1 is a set of six recording sessions of one professional voice talent, a male native speaker of English; TaL80 is a set of recording sessions of 81 native speakers of English without voice talent experience. Overall, the corpus contains 24 hours of parallel ultrasound, video, and audio data, of which approximately 13.5 hours are speech. This paper describes the corpus and presents benchmark results for the tasks of speech recognition, speech synthesis (articulatory-to-acoustic mapping), and automatic synchronisation of ultrasound to audio. The TaL corpus is publicly available under the CC BY-NC 4.0 license.","PeriodicalId":243211,"journal":{"name":"2021 IEEE Spoken Language Technology Workshop (SLT)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Tal: A Synchronised Multi-Speaker Corpus of Ultrasound Tongue Imaging, Audio, and Lip Videos\",\"authors\":\"M. Ribeiro, Jennifer Sanger, Jingxuan Zhang, Aciel Eshky, A. Wrench, Korin Richmond, S. Renals\",\"doi\":\"10.1109/SLT48900.2021.9383619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the Tongue and Lips corpus (TaL), a multi-speaker corpus of audio, ultrasound tongue imaging, and lip videos. TaL consists of two parts: TaL1 is a set of six recording sessions of one professional voice talent, a male native speaker of English; TaL80 is a set of recording sessions of 81 native speakers of English without voice talent experience. Overall, the corpus contains 24 hours of parallel ultrasound, video, and audio data, of which approximately 13.5 hours are speech. This paper describes the corpus and presents benchmark results for the tasks of speech recognition, speech synthesis (articulatory-to-acoustic mapping), and automatic synchronisation of ultrasound to audio. The TaL corpus is publicly available under the CC BY-NC 4.0 license.\",\"PeriodicalId\":243211,\"journal\":{\"name\":\"2021 IEEE Spoken Language Technology Workshop (SLT)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Spoken Language Technology Workshop (SLT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT48900.2021.9383619\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT48900.2021.9383619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tal: A Synchronised Multi-Speaker Corpus of Ultrasound Tongue Imaging, Audio, and Lip Videos
We present the Tongue and Lips corpus (TaL), a multi-speaker corpus of audio, ultrasound tongue imaging, and lip videos. TaL consists of two parts: TaL1 is a set of six recording sessions of one professional voice talent, a male native speaker of English; TaL80 is a set of recording sessions of 81 native speakers of English without voice talent experience. Overall, the corpus contains 24 hours of parallel ultrasound, video, and audio data, of which approximately 13.5 hours are speech. This paper describes the corpus and presents benchmark results for the tasks of speech recognition, speech synthesis (articulatory-to-acoustic mapping), and automatic synchronisation of ultrasound to audio. The TaL corpus is publicly available under the CC BY-NC 4.0 license.