{"title":"求解组合优化问题的滞后细胞神经网络","authors":"T. Nakaguchi, K. Omiya, M. Tanaka","doi":"10.1109/CNNA.2002.1035093","DOIUrl":null,"url":null,"abstract":"Hysteresis cellular neural networks are one of artificial neural networks which work effectively against large scale problems. In the previous work, remarkable methods have never been developed to overcome the defects of hysteresis cellular neural networks. We then propose a novel architecture for combinatorial optimization problems to overcome them. Experimental results indicate the efficiency of the architecture.","PeriodicalId":387716,"journal":{"name":"Proceedings of the 2002 7th IEEE International Workshop on Cellular Neural Networks and Their Applications","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hysteresis cellular neural networks for solving combinatorial optimization problems\",\"authors\":\"T. Nakaguchi, K. Omiya, M. Tanaka\",\"doi\":\"10.1109/CNNA.2002.1035093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hysteresis cellular neural networks are one of artificial neural networks which work effectively against large scale problems. In the previous work, remarkable methods have never been developed to overcome the defects of hysteresis cellular neural networks. We then propose a novel architecture for combinatorial optimization problems to overcome them. Experimental results indicate the efficiency of the architecture.\",\"PeriodicalId\":387716,\"journal\":{\"name\":\"Proceedings of the 2002 7th IEEE International Workshop on Cellular Neural Networks and Their Applications\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2002 7th IEEE International Workshop on Cellular Neural Networks and Their Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CNNA.2002.1035093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 7th IEEE International Workshop on Cellular Neural Networks and Their Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.2002.1035093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hysteresis cellular neural networks for solving combinatorial optimization problems
Hysteresis cellular neural networks are one of artificial neural networks which work effectively against large scale problems. In the previous work, remarkable methods have never been developed to overcome the defects of hysteresis cellular neural networks. We then propose a novel architecture for combinatorial optimization problems to overcome them. Experimental results indicate the efficiency of the architecture.