{"title":"低功耗恢复电路降低SRAM单元的摆动电压,提高读写空间","authors":"Vinod Kumar, Ram Murti Rawat","doi":"10.4018/ijsppc.2021040102","DOIUrl":null,"url":null,"abstract":"This paper examines the factors that affect the static noise margin (SNM) of static random access memories which focus on optimizing read and write operation of 8T SRAM cell which is better than 6T SRAM cell using swing restoration for dual node voltage. New 8T SRAM technique on the circuit or architecture level is required. In this paper, comparative analysis of 6T and 8T SRAM cells with improved read and write margin is done for 130nm technology with cadence virtuoso schematics tool.","PeriodicalId":344690,"journal":{"name":"Int. J. Secur. Priv. Pervasive Comput.","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low Power Restoration Circuits Reduce Swing Voltages of SRAM Cell With Improved Read and Write Margins\",\"authors\":\"Vinod Kumar, Ram Murti Rawat\",\"doi\":\"10.4018/ijsppc.2021040102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper examines the factors that affect the static noise margin (SNM) of static random access memories which focus on optimizing read and write operation of 8T SRAM cell which is better than 6T SRAM cell using swing restoration for dual node voltage. New 8T SRAM technique on the circuit or architecture level is required. In this paper, comparative analysis of 6T and 8T SRAM cells with improved read and write margin is done for 130nm technology with cadence virtuoso schematics tool.\",\"PeriodicalId\":344690,\"journal\":{\"name\":\"Int. J. Secur. Priv. Pervasive Comput.\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Secur. Priv. Pervasive Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijsppc.2021040102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Secur. Priv. Pervasive Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijsppc.2021040102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Low Power Restoration Circuits Reduce Swing Voltages of SRAM Cell With Improved Read and Write Margins
This paper examines the factors that affect the static noise margin (SNM) of static random access memories which focus on optimizing read and write operation of 8T SRAM cell which is better than 6T SRAM cell using swing restoration for dual node voltage. New 8T SRAM technique on the circuit or architecture level is required. In this paper, comparative analysis of 6T and 8T SRAM cells with improved read and write margin is done for 130nm technology with cadence virtuoso schematics tool.