用于构建关联数据应用程序的基于反馈的数据集推荐

Hélio Rodrigues de Oliveira, A. Tavares, B. Lóscio
{"title":"用于构建关联数据应用程序的基于反馈的数据集推荐","authors":"Hélio Rodrigues de Oliveira, A. Tavares, B. Lóscio","doi":"10.1145/2362499.2362507","DOIUrl":null,"url":null,"abstract":"The huge and growing volume of linked data is increasing the interest in developing applications on top of such data. One of the distinguishing features of linked data applications is that the data could come from any RDF data set available on the Web. Different from conventional applications, where the data sources are under control of the application's owner or developer, linked data applications follow the Semantic Web vision of a world full of reusable data. Considering a potentially large number of data sets, one of the primary challenges facing the development of such solutions is the identification of suitable data sources, i.e., data sets that could give a good contribution to the answer of user queries. In this paper, we discuss this problem and we present a feedback-based approach to incrementally identify new data sets for domain-specific linked data application.","PeriodicalId":275036,"journal":{"name":"International Conference on Semantic Systems","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Feedback-based data set recommendation for building linked data applications\",\"authors\":\"Hélio Rodrigues de Oliveira, A. Tavares, B. Lóscio\",\"doi\":\"10.1145/2362499.2362507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The huge and growing volume of linked data is increasing the interest in developing applications on top of such data. One of the distinguishing features of linked data applications is that the data could come from any RDF data set available on the Web. Different from conventional applications, where the data sources are under control of the application's owner or developer, linked data applications follow the Semantic Web vision of a world full of reusable data. Considering a potentially large number of data sets, one of the primary challenges facing the development of such solutions is the identification of suitable data sources, i.e., data sets that could give a good contribution to the answer of user queries. In this paper, we discuss this problem and we present a feedback-based approach to incrementally identify new data sets for domain-specific linked data application.\",\"PeriodicalId\":275036,\"journal\":{\"name\":\"International Conference on Semantic Systems\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Semantic Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2362499.2362507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Semantic Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2362499.2362507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

巨大且不断增长的关联数据量增加了基于这些数据开发应用程序的兴趣。链接数据应用程序的一个显著特征是数据可以来自Web上可用的任何RDF数据集。与数据源由应用程序所有者或开发人员控制的传统应用程序不同,链接数据应用程序遵循充满可重用数据的语义Web愿景。考虑到潜在的大量数据集,开发此类解决方案所面临的主要挑战之一是识别合适的数据源,即能够对用户查询的答案做出良好贡献的数据集。在本文中,我们讨论了这个问题,并提出了一种基于反馈的方法来增量地识别特定于领域的关联数据应用的新数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feedback-based data set recommendation for building linked data applications
The huge and growing volume of linked data is increasing the interest in developing applications on top of such data. One of the distinguishing features of linked data applications is that the data could come from any RDF data set available on the Web. Different from conventional applications, where the data sources are under control of the application's owner or developer, linked data applications follow the Semantic Web vision of a world full of reusable data. Considering a potentially large number of data sets, one of the primary challenges facing the development of such solutions is the identification of suitable data sources, i.e., data sets that could give a good contribution to the answer of user queries. In this paper, we discuss this problem and we present a feedback-based approach to incrementally identify new data sets for domain-specific linked data application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信