{"title":"利用声学、韵律和词汇线索预测电影质量","authors":"Su Ji Park, Alan Rozet","doi":"10.1109/SLT48900.2021.9383509","DOIUrl":null,"url":null,"abstract":"In this paper, we propose using acoustic, prosodic, and lexical features to identify movie quality as a decision support tool for film producers. Using a dataset of movie trailer audio clips paired with audience ratings for the corresponding film, we trained machine learning models to predict a film’s rating. We further analyze the impact of prosodic features with neural network feature importance approaches and find differing influence across genres. We finally compare acoustic, prosodic, and lexical feature variance against film rating, and find some evidence for an inverse association.","PeriodicalId":243211,"journal":{"name":"2021 IEEE Spoken Language Technology Workshop (SLT)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Film Quality Prediction Using Acoustic, Prosodic and Lexical Cues\",\"authors\":\"Su Ji Park, Alan Rozet\",\"doi\":\"10.1109/SLT48900.2021.9383509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose using acoustic, prosodic, and lexical features to identify movie quality as a decision support tool for film producers. Using a dataset of movie trailer audio clips paired with audience ratings for the corresponding film, we trained machine learning models to predict a film’s rating. We further analyze the impact of prosodic features with neural network feature importance approaches and find differing influence across genres. We finally compare acoustic, prosodic, and lexical feature variance against film rating, and find some evidence for an inverse association.\",\"PeriodicalId\":243211,\"journal\":{\"name\":\"2021 IEEE Spoken Language Technology Workshop (SLT)\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Spoken Language Technology Workshop (SLT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT48900.2021.9383509\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT48900.2021.9383509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Film Quality Prediction Using Acoustic, Prosodic and Lexical Cues
In this paper, we propose using acoustic, prosodic, and lexical features to identify movie quality as a decision support tool for film producers. Using a dataset of movie trailer audio clips paired with audience ratings for the corresponding film, we trained machine learning models to predict a film’s rating. We further analyze the impact of prosodic features with neural network feature importance approaches and find differing influence across genres. We finally compare acoustic, prosodic, and lexical feature variance against film rating, and find some evidence for an inverse association.