Q. Wu, Li Chen, K. Ngan, Hongliang Li, Fanman Meng, Linfeng Xu
{"title":"基于区域自适应耦合网络的统一单幅图像去训练模型","authors":"Q. Wu, Li Chen, K. Ngan, Hongliang Li, Fanman Meng, Linfeng Xu","doi":"10.1109/VCIP49819.2020.9301865","DOIUrl":null,"url":null,"abstract":"Single image de-raining is quite challenging due to the diversity of rain types and inhomogeneous distributions of rainwater. By means of dedicated models and constraints, existing methods perform well for specific rain type. However, their generalization capability is highly limited as well. In this paper, we propose a unified de-raining model by selectively fusing the clean background of the input rain image and the well restored regions occluded by various rains. This is achieved by our region adaptive coupled network (RACN), whose two branches integrate the features of each other in different layers to jointly generate the spatial-variant weight and restored image respectively. On the one hand, the weight branch could lead the restoration branch to focus on the regions with higher contributions for de-raining. On the other hand, the restoration branch could guide the weight branch to keep off the regions with over-/under-filtering risks. Extensive experiments show that our method outperforms many state-of-the-art de-raining algorithms on diverse rain types including the rain streak, raindrop and rain-mist.","PeriodicalId":431880,"journal":{"name":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A Unified Single Image De-raining Model via Region Adaptive Coupled Network\",\"authors\":\"Q. Wu, Li Chen, K. Ngan, Hongliang Li, Fanman Meng, Linfeng Xu\",\"doi\":\"10.1109/VCIP49819.2020.9301865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single image de-raining is quite challenging due to the diversity of rain types and inhomogeneous distributions of rainwater. By means of dedicated models and constraints, existing methods perform well for specific rain type. However, their generalization capability is highly limited as well. In this paper, we propose a unified de-raining model by selectively fusing the clean background of the input rain image and the well restored regions occluded by various rains. This is achieved by our region adaptive coupled network (RACN), whose two branches integrate the features of each other in different layers to jointly generate the spatial-variant weight and restored image respectively. On the one hand, the weight branch could lead the restoration branch to focus on the regions with higher contributions for de-raining. On the other hand, the restoration branch could guide the weight branch to keep off the regions with over-/under-filtering risks. Extensive experiments show that our method outperforms many state-of-the-art de-raining algorithms on diverse rain types including the rain streak, raindrop and rain-mist.\",\"PeriodicalId\":431880,\"journal\":{\"name\":\"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VCIP49819.2020.9301865\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP49819.2020.9301865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Unified Single Image De-raining Model via Region Adaptive Coupled Network
Single image de-raining is quite challenging due to the diversity of rain types and inhomogeneous distributions of rainwater. By means of dedicated models and constraints, existing methods perform well for specific rain type. However, their generalization capability is highly limited as well. In this paper, we propose a unified de-raining model by selectively fusing the clean background of the input rain image and the well restored regions occluded by various rains. This is achieved by our region adaptive coupled network (RACN), whose two branches integrate the features of each other in different layers to jointly generate the spatial-variant weight and restored image respectively. On the one hand, the weight branch could lead the restoration branch to focus on the regions with higher contributions for de-raining. On the other hand, the restoration branch could guide the weight branch to keep off the regions with over-/under-filtering risks. Extensive experiments show that our method outperforms many state-of-the-art de-raining algorithms on diverse rain types including the rain streak, raindrop and rain-mist.