20.6 A 0.5V-VIN 1.44 ma级事件驱动数字LDO,具有完全集成的100pF输出电容

Doyun Kim, Jonghwan Kim, Hyunju Ham, Mingoo Seok
{"title":"20.6 A 0.5V-VIN 1.44 ma级事件驱动数字LDO,具有完全集成的100pF输出电容","authors":"Doyun Kim, Jonghwan Kim, Hyunju Ham, Mingoo Seok","doi":"10.1109/ISSCC.2017.7870403","DOIUrl":null,"url":null,"abstract":"In today's system-on-chip designs, a low-drop-out voltage regulator (LDO) is one of the most popular choices to create a distinct voltage domain owing to its high power density. Many LDOs, however, need a large output capacitor (C<inf>OUT</inf>) to compensate a fast load current (I<inf>LOAD</inf>) change, increasing the number of pins and off-chip components. In synchronous digital LDO designs, high frequency can miniaturize C<inf>OUT</inf>, but it inevitably causes power inefficiency [2]. A recent work has instead employed an event-driven (ED) control scheme to alleviate the C<inf>OUT</inf> requirement, demonstrating a 400µA-class digital LDO with a C<inf>OUT</inf> of 400pF [1]. The ED scheme is promising, but it is still desirable to develop an LDO which can support a larger I<inf>LOAD</inf> with a smaller C<inf>OUT</inf>. This is indeed a daunting challenge since a substantial reduction in feedback latency (T<inf>LAT</inf>) is necessary to retain the same level of output voltage change (ΔV<inf>OUT</inf>) with a smaller C<inf>OUT</inf>. In this work, to shorten latency, we propose to infuse fine-grained parallelism into ED control systems and develop a fully integrated digital LDO. The prototyped LDO can support 1.44mA I<inf>LOAD</inf> at 0.5V V<inf>IN</inf>, 0.45V V<inf>SP</inf>, and 99.2% peak current efficiency. The LDO shows less than 34mV (7.6%) ΔV<inf>OUT</inf> with a 0.1nF C<inf>OUT</inf> when ΔI<inf>LOAD</inf> is ±1.44mA.","PeriodicalId":269679,"journal":{"name":"2017 IEEE International Solid-State Circuits Conference (ISSCC)","volume":"295 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"20.6 A 0.5V-VIN 1.44mA-class event-driven digital LDO with a fully integrated 100pF output capacitor\",\"authors\":\"Doyun Kim, Jonghwan Kim, Hyunju Ham, Mingoo Seok\",\"doi\":\"10.1109/ISSCC.2017.7870403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In today's system-on-chip designs, a low-drop-out voltage regulator (LDO) is one of the most popular choices to create a distinct voltage domain owing to its high power density. Many LDOs, however, need a large output capacitor (C<inf>OUT</inf>) to compensate a fast load current (I<inf>LOAD</inf>) change, increasing the number of pins and off-chip components. In synchronous digital LDO designs, high frequency can miniaturize C<inf>OUT</inf>, but it inevitably causes power inefficiency [2]. A recent work has instead employed an event-driven (ED) control scheme to alleviate the C<inf>OUT</inf> requirement, demonstrating a 400µA-class digital LDO with a C<inf>OUT</inf> of 400pF [1]. The ED scheme is promising, but it is still desirable to develop an LDO which can support a larger I<inf>LOAD</inf> with a smaller C<inf>OUT</inf>. This is indeed a daunting challenge since a substantial reduction in feedback latency (T<inf>LAT</inf>) is necessary to retain the same level of output voltage change (ΔV<inf>OUT</inf>) with a smaller C<inf>OUT</inf>. In this work, to shorten latency, we propose to infuse fine-grained parallelism into ED control systems and develop a fully integrated digital LDO. The prototyped LDO can support 1.44mA I<inf>LOAD</inf> at 0.5V V<inf>IN</inf>, 0.45V V<inf>SP</inf>, and 99.2% peak current efficiency. The LDO shows less than 34mV (7.6%) ΔV<inf>OUT</inf> with a 0.1nF C<inf>OUT</inf> when ΔI<inf>LOAD</inf> is ±1.44mA.\",\"PeriodicalId\":269679,\"journal\":{\"name\":\"2017 IEEE International Solid-State Circuits Conference (ISSCC)\",\"volume\":\"295 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Solid-State Circuits Conference (ISSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC.2017.7870403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Solid-State Circuits Conference (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2017.7870403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

摘要

在当今的片上系统设计中,由于其高功率密度,低降稳压器(LDO)是创建独特电压域的最流行选择之一。然而,许多ldo需要一个大的输出电容(COUT)来补偿快速负载电流(ILOAD)变化,从而增加了引脚和片外组件的数量。在同步数字LDO设计中,高频可以使COUT小型化,但不可避免地导致功率低效率[2]。最近的一项工作采用事件驱动(ED)控制方案来缓解COUT要求,展示了COUT为400pF的400 μ A级数字LDO[1]。ED方案很有前途,但开发一种LDO仍然是可取的,它可以支持更大的ILOAD和更小的COUT。这确实是一项艰巨的挑战,因为要在较小的COUT下保持相同的输出电压变化水平(ΔVOUT),必须大幅减少反馈延迟(TLAT)。在这项工作中,为了缩短延迟,我们建议将细粒度并行性注入ED控制系统,并开发一个完全集成的数字LDO。原型LDO可以在0.5V VIN, 0.45V VSP和99.2%峰值电流效率下支持1.44mA ILOAD。当ΔILOAD为±1.44mA时,LDO小于34mV (7.6%) ΔVOUT, COUT为0.1nF。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
20.6 A 0.5V-VIN 1.44mA-class event-driven digital LDO with a fully integrated 100pF output capacitor
In today's system-on-chip designs, a low-drop-out voltage regulator (LDO) is one of the most popular choices to create a distinct voltage domain owing to its high power density. Many LDOs, however, need a large output capacitor (COUT) to compensate a fast load current (ILOAD) change, increasing the number of pins and off-chip components. In synchronous digital LDO designs, high frequency can miniaturize COUT, but it inevitably causes power inefficiency [2]. A recent work has instead employed an event-driven (ED) control scheme to alleviate the COUT requirement, demonstrating a 400µA-class digital LDO with a COUT of 400pF [1]. The ED scheme is promising, but it is still desirable to develop an LDO which can support a larger ILOAD with a smaller COUT. This is indeed a daunting challenge since a substantial reduction in feedback latency (TLAT) is necessary to retain the same level of output voltage change (ΔVOUT) with a smaller COUT. In this work, to shorten latency, we propose to infuse fine-grained parallelism into ED control systems and develop a fully integrated digital LDO. The prototyped LDO can support 1.44mA ILOAD at 0.5V VIN, 0.45V VSP, and 99.2% peak current efficiency. The LDO shows less than 34mV (7.6%) ΔVOUT with a 0.1nF COUT when ΔILOAD is ±1.44mA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信