基于模糊聚类和RBF神经网络的自适应混合入侵检测体系结构

Ahmad Ghadiri, Nasser Ghadiri
{"title":"基于模糊聚类和RBF神经网络的自适应混合入侵检测体系结构","authors":"Ahmad Ghadiri, Nasser Ghadiri","doi":"10.1109/CNSR.2011.26","DOIUrl":null,"url":null,"abstract":"Automatic detection of network intrusion is a challenging task because of increasing types of attacks. Many of the existing approaches either are rigid, inflexible designs tailored to a specific situation or require manual setting of design parameters such as the initial number of clusters. In this paper we allow the design parameters to be determined dynamically by adopting a layered hybrid architecture, hence resolving the aforementioned shortcomings. The first layer uses FCM and GK fuzzy clustering to extract the features and the second layer uses a set of RBF neural networks to perform the classification. The flexible design parameters are initial number of clusters, number of RBF networks and number of neurons inside each network which are determined with minimal input from the user. The simulation result shows high detection rates as well as fewer false positives compared to earlier approaches.","PeriodicalId":272359,"journal":{"name":"2011 Ninth Annual Communication Networks and Services Research Conference","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"An Adaptive Hybrid Architecture for Intrusion Detection Based on Fuzzy Clustering and RBF Neural Networks\",\"authors\":\"Ahmad Ghadiri, Nasser Ghadiri\",\"doi\":\"10.1109/CNSR.2011.26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic detection of network intrusion is a challenging task because of increasing types of attacks. Many of the existing approaches either are rigid, inflexible designs tailored to a specific situation or require manual setting of design parameters such as the initial number of clusters. In this paper we allow the design parameters to be determined dynamically by adopting a layered hybrid architecture, hence resolving the aforementioned shortcomings. The first layer uses FCM and GK fuzzy clustering to extract the features and the second layer uses a set of RBF neural networks to perform the classification. The flexible design parameters are initial number of clusters, number of RBF networks and number of neurons inside each network which are determined with minimal input from the user. The simulation result shows high detection rates as well as fewer false positives compared to earlier approaches.\",\"PeriodicalId\":272359,\"journal\":{\"name\":\"2011 Ninth Annual Communication Networks and Services Research Conference\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Ninth Annual Communication Networks and Services Research Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CNSR.2011.26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Ninth Annual Communication Networks and Services Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNSR.2011.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

随着攻击类型的不断增加,网络入侵的自动检测成为一项具有挑战性的任务。许多现有的方法要么是针对特定情况量身定制的僵化、不灵活的设计,要么需要手动设置设计参数,例如集群的初始数量。在本文中,我们通过采用分层混合架构来动态确定设计参数,从而解决了上述缺点。第一层使用FCM和GK模糊聚类提取特征,第二层使用一组RBF神经网络进行分类。灵活的设计参数是初始簇数、RBF网络数和每个网络内的神经元数,这些参数是在用户输入最小的情况下确定的。仿真结果表明,与早期的方法相比,该方法具有较高的检测率和更少的误报。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Adaptive Hybrid Architecture for Intrusion Detection Based on Fuzzy Clustering and RBF Neural Networks
Automatic detection of network intrusion is a challenging task because of increasing types of attacks. Many of the existing approaches either are rigid, inflexible designs tailored to a specific situation or require manual setting of design parameters such as the initial number of clusters. In this paper we allow the design parameters to be determined dynamically by adopting a layered hybrid architecture, hence resolving the aforementioned shortcomings. The first layer uses FCM and GK fuzzy clustering to extract the features and the second layer uses a set of RBF neural networks to perform the classification. The flexible design parameters are initial number of clusters, number of RBF networks and number of neurons inside each network which are determined with minimal input from the user. The simulation result shows high detection rates as well as fewer false positives compared to earlier approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信