基于场景遮挡估计的视频监控目标视觉跟踪性能研究

Lu Wang, Lisheng Xu, Liling Hao, Qingxu Deng, M. Meng
{"title":"基于场景遮挡估计的视频监控目标视觉跟踪性能研究","authors":"Lu Wang, Lisheng Xu, Liling Hao, Qingxu Deng, M. Meng","doi":"10.1109/ICINFA.2016.7832117","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an approach for improving the object tracking accuracy in video surveillance scenarios by estimating and compensating the occlusion introduced by static scene objects. Specifically, the scene occluder map is first estimated by analyzing the gradient of a normalized cumulative motion map from the frames of the first several minutes of a surveillance video. Then, a scene occlusion compensation approach for Mean Shift tracking is proposed to improve the object tracking accuracy by using the estimated scene occluder map. Experimental results on two public data sets demonstrate the effectiveness of the proposed approach.","PeriodicalId":389619,"journal":{"name":"2016 IEEE International Conference on Information and Automation (ICIA)","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improving object visual tracking performance by scene occluder estimation for video surveillance\",\"authors\":\"Lu Wang, Lisheng Xu, Liling Hao, Qingxu Deng, M. Meng\",\"doi\":\"10.1109/ICINFA.2016.7832117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an approach for improving the object tracking accuracy in video surveillance scenarios by estimating and compensating the occlusion introduced by static scene objects. Specifically, the scene occluder map is first estimated by analyzing the gradient of a normalized cumulative motion map from the frames of the first several minutes of a surveillance video. Then, a scene occlusion compensation approach for Mean Shift tracking is proposed to improve the object tracking accuracy by using the estimated scene occluder map. Experimental results on two public data sets demonstrate the effectiveness of the proposed approach.\",\"PeriodicalId\":389619,\"journal\":{\"name\":\"2016 IEEE International Conference on Information and Automation (ICIA)\",\"volume\":\"124 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Information and Automation (ICIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICINFA.2016.7832117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Information and Automation (ICIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICINFA.2016.7832117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种通过估计和补偿静态场景物体遮挡来提高视频监控场景中物体跟踪精度的方法。具体来说,首先通过分析来自监控视频前几分钟帧的归一化累积运动图的梯度来估计场景遮挡地图。然后,提出了一种基于场景遮挡补偿的Mean Shift跟踪方法,利用估计的场景遮挡贴图提高目标跟踪精度。在两个公开数据集上的实验结果证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving object visual tracking performance by scene occluder estimation for video surveillance
In this paper, we propose an approach for improving the object tracking accuracy in video surveillance scenarios by estimating and compensating the occlusion introduced by static scene objects. Specifically, the scene occluder map is first estimated by analyzing the gradient of a normalized cumulative motion map from the frames of the first several minutes of a surveillance video. Then, a scene occlusion compensation approach for Mean Shift tracking is proposed to improve the object tracking accuracy by using the estimated scene occluder map. Experimental results on two public data sets demonstrate the effectiveness of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信