学科辅导系统的词嵌入

Rosana Abdoune, Lydia Lazib, Farida Dahmani-Bouarab
{"title":"学科辅导系统的词嵌入","authors":"Rosana Abdoune, Lydia Lazib, Farida Dahmani-Bouarab","doi":"10.1109/ISIA55826.2022.9993615","DOIUrl":null,"url":null,"abstract":"Question Answering (QA) systems have made remarkable progress in information retrieval techniques, especially in their ability to naturally access knowledge resources by querying and retrieving correct answers to various questions. In tutoring, these systems can help by reducing the requirement for interaction between learners and tutors and allowing learners to post their queries and receive answers for the same. Hence, we propose a disciplinary tutoring system based on a domain ontology ONTO-TDM (ontology for teaching domain modeling) and natural language processing (NLP) techniques to facilitate access to information and answer the learners' questions. Recently, deep learning algorithms have achieved impressive success in various natural language processing tasks. The basic concept of these techniques is to compute a distributed representation of words from continuous vectors, also known as word embedding. In this study, we use deep learning-based word embedding models for a disciplinary tutoring system. Our goal through this work is to find out whether word embedding could significantly improve the response generation task of the suggested system. Therefore, we have built word embeddings using the word2vec skip-gram model with different training parameters on a large corpus composed of question-answer pairs. Experimental results show that using the word2vec model has a significant impact on the accuracy of the proposed tool.","PeriodicalId":169898,"journal":{"name":"2022 5th International Symposium on Informatics and its Applications (ISIA)","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Word Embeddings for a Disciplinary Tutoring System\",\"authors\":\"Rosana Abdoune, Lydia Lazib, Farida Dahmani-Bouarab\",\"doi\":\"10.1109/ISIA55826.2022.9993615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Question Answering (QA) systems have made remarkable progress in information retrieval techniques, especially in their ability to naturally access knowledge resources by querying and retrieving correct answers to various questions. In tutoring, these systems can help by reducing the requirement for interaction between learners and tutors and allowing learners to post their queries and receive answers for the same. Hence, we propose a disciplinary tutoring system based on a domain ontology ONTO-TDM (ontology for teaching domain modeling) and natural language processing (NLP) techniques to facilitate access to information and answer the learners' questions. Recently, deep learning algorithms have achieved impressive success in various natural language processing tasks. The basic concept of these techniques is to compute a distributed representation of words from continuous vectors, also known as word embedding. In this study, we use deep learning-based word embedding models for a disciplinary tutoring system. Our goal through this work is to find out whether word embedding could significantly improve the response generation task of the suggested system. Therefore, we have built word embeddings using the word2vec skip-gram model with different training parameters on a large corpus composed of question-answer pairs. Experimental results show that using the word2vec model has a significant impact on the accuracy of the proposed tool.\",\"PeriodicalId\":169898,\"journal\":{\"name\":\"2022 5th International Symposium on Informatics and its Applications (ISIA)\",\"volume\":\"116 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 5th International Symposium on Informatics and its Applications (ISIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIA55826.2022.9993615\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th International Symposium on Informatics and its Applications (ISIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIA55826.2022.9993615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

问答系统在信息检索技术方面取得了显著的进步,特别是在通过查询和检索各种问题的正确答案来自然访问知识资源的能力方面。在辅导中,这些系统可以通过减少学习者和导师之间的交互需求,并允许学习者发布他们的问题并获得相同的答案来提供帮助。因此,我们提出了一个基于领域本体ONTO-TDM(教学领域建模本体)和自然语言处理(NLP)技术的学科辅导系统,以方便信息的访问和回答学习者的问题。最近,深度学习算法在各种自然语言处理任务中取得了令人印象深刻的成功。这些技术的基本概念是从连续向量中计算词的分布式表示,也称为词嵌入。在本研究中,我们将基于深度学习的词嵌入模型用于学科辅导系统。通过这项工作,我们的目标是发现词嵌入是否可以显著改善建议系统的响应生成任务。因此,我们在一个由问答对组成的大型语料库上,使用具有不同训练参数的word2vec skip-gram模型构建了词嵌入。实验结果表明,使用word2vec模型对所提工具的精度有显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Word Embeddings for a Disciplinary Tutoring System
Question Answering (QA) systems have made remarkable progress in information retrieval techniques, especially in their ability to naturally access knowledge resources by querying and retrieving correct answers to various questions. In tutoring, these systems can help by reducing the requirement for interaction between learners and tutors and allowing learners to post their queries and receive answers for the same. Hence, we propose a disciplinary tutoring system based on a domain ontology ONTO-TDM (ontology for teaching domain modeling) and natural language processing (NLP) techniques to facilitate access to information and answer the learners' questions. Recently, deep learning algorithms have achieved impressive success in various natural language processing tasks. The basic concept of these techniques is to compute a distributed representation of words from continuous vectors, also known as word embedding. In this study, we use deep learning-based word embedding models for a disciplinary tutoring system. Our goal through this work is to find out whether word embedding could significantly improve the response generation task of the suggested system. Therefore, we have built word embeddings using the word2vec skip-gram model with different training parameters on a large corpus composed of question-answer pairs. Experimental results show that using the word2vec model has a significant impact on the accuracy of the proposed tool.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信