基于特征的机器学习漏洞预测特征选择研究

Zhanjun Li, Yan Shao
{"title":"基于特征的机器学习漏洞预测特征选择研究","authors":"Zhanjun Li, Yan Shao","doi":"10.1145/3318299.3318345","DOIUrl":null,"url":null,"abstract":"This paper summarized the basic process of software vulnerability prediction using feature-based machine learning for the first time. In addition to sorting out the related types and basis of vulnerability features definition, the advantages and disadvantages of different methods are compared. Finally, this paper analyzed the difficulties and challenges in this research field, and put forward some suggestions for future work.","PeriodicalId":164987,"journal":{"name":"International Conference on Machine Learning and Computing","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A Survey of Feature Selection for Vulnerability Prediction Using Feature-based Machine Learning\",\"authors\":\"Zhanjun Li, Yan Shao\",\"doi\":\"10.1145/3318299.3318345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper summarized the basic process of software vulnerability prediction using feature-based machine learning for the first time. In addition to sorting out the related types and basis of vulnerability features definition, the advantages and disadvantages of different methods are compared. Finally, this paper analyzed the difficulties and challenges in this research field, and put forward some suggestions for future work.\",\"PeriodicalId\":164987,\"journal\":{\"name\":\"International Conference on Machine Learning and Computing\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Machine Learning and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3318299.3318345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Machine Learning and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3318299.3318345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文首次总结了基于特征的机器学习进行软件漏洞预测的基本过程。梳理了漏洞特征定义的相关类型和依据,比较了不同方法的优缺点。最后,分析了本研究领域面临的困难和挑战,并对今后的工作提出了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Survey of Feature Selection for Vulnerability Prediction Using Feature-based Machine Learning
This paper summarized the basic process of software vulnerability prediction using feature-based machine learning for the first time. In addition to sorting out the related types and basis of vulnerability features definition, the advantages and disadvantages of different methods are compared. Finally, this paper analyzed the difficulties and challenges in this research field, and put forward some suggestions for future work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信