数据科学笔记本的静态分析框架

Pavle Suboti'c, Lazar Miliki'c, M. Stojic
{"title":"数据科学笔记本的静态分析框架","authors":"Pavle Suboti'c, Lazar Miliki'c, M. Stojic","doi":"10.1145/3510457.3513032","DOIUrl":null,"url":null,"abstract":"Notebooks provide an interactive environment for programmers to develop code, analyse data and inject interleaved visualisations in a single environment. Despite their flexibility, a major pitfall that data scientists encounter is unexpected behaviour caused by the unique out-of-order execution model of notebooks. As a result, data scientists face various challenges ranging from notebook correctness, reproducibility and cleaning. In this paper, we propose a framework that performs static analysis on notebooks, incorporating their unique execution semantics. Our framework is general in the sense that it accommodates a wide range of analyses, useful for various notebook use cases. We have instantiated our framework on a diverse set of analyses and have evaluated them on 2211 real world notebooks. Our evaluation demonstrates that the vast majority (98.7%) of notebooks can be analysed in less than a second, well within the time frame required by interactive notebook clients.","PeriodicalId":119790,"journal":{"name":"2022 IEEE/ACM 44th International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A Static Analysis Framework for Data Science Notebooks\",\"authors\":\"Pavle Suboti'c, Lazar Miliki'c, M. Stojic\",\"doi\":\"10.1145/3510457.3513032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Notebooks provide an interactive environment for programmers to develop code, analyse data and inject interleaved visualisations in a single environment. Despite their flexibility, a major pitfall that data scientists encounter is unexpected behaviour caused by the unique out-of-order execution model of notebooks. As a result, data scientists face various challenges ranging from notebook correctness, reproducibility and cleaning. In this paper, we propose a framework that performs static analysis on notebooks, incorporating their unique execution semantics. Our framework is general in the sense that it accommodates a wide range of analyses, useful for various notebook use cases. We have instantiated our framework on a diverse set of analyses and have evaluated them on 2211 real world notebooks. Our evaluation demonstrates that the vast majority (98.7%) of notebooks can be analysed in less than a second, well within the time frame required by interactive notebook clients.\",\"PeriodicalId\":119790,\"journal\":{\"name\":\"2022 IEEE/ACM 44th International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACM 44th International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3510457.3513032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 44th International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3510457.3513032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

笔记本电脑为程序员提供了一个交互式的环境来开发代码,分析数据,并在一个环境中注入交错的可视化。尽管它们具有灵活性,但数据科学家遇到的一个主要陷阱是由笔记本电脑独特的乱序执行模型引起的意外行为。因此,数据科学家面临着各种各样的挑战,从笔记本的正确性、再现性到清理。在本文中,我们提出了一个框架,可以对笔记本进行静态分析,并结合其独特的执行语义。我们的框架是通用的,因为它容纳了广泛的分析,对各种笔记本用例都很有用。我们已经在一组不同的分析中实例化了我们的框架,并在2211个真实世界的笔记本上对它们进行了评估。我们的评估表明,绝大多数(98.7%)的笔记本电脑可以在不到一秒钟的时间内进行分析,完全在交互式笔记本客户端所需的时间范围内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Static Analysis Framework for Data Science Notebooks
Notebooks provide an interactive environment for programmers to develop code, analyse data and inject interleaved visualisations in a single environment. Despite their flexibility, a major pitfall that data scientists encounter is unexpected behaviour caused by the unique out-of-order execution model of notebooks. As a result, data scientists face various challenges ranging from notebook correctness, reproducibility and cleaning. In this paper, we propose a framework that performs static analysis on notebooks, incorporating their unique execution semantics. Our framework is general in the sense that it accommodates a wide range of analyses, useful for various notebook use cases. We have instantiated our framework on a diverse set of analyses and have evaluated them on 2211 real world notebooks. Our evaluation demonstrates that the vast majority (98.7%) of notebooks can be analysed in less than a second, well within the time frame required by interactive notebook clients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信