神经网络误差景观分析中的空间边界搜索

Anna Sergeevna Bosman, A. Engelbrecht, Mardé Helbig
{"title":"神经网络误差景观分析中的空间边界搜索","authors":"Anna Sergeevna Bosman, A. Engelbrecht, Mardé Helbig","doi":"10.1109/SSCI.2016.7850152","DOIUrl":null,"url":null,"abstract":"Fitness landscape analysis encompasses a selection of techniques designed to estimate the properties of a search landscape associated with an optimisation problem. Applied to neural network training, fitness landscape analysis can be used to establish the link between the shape of the objective function and various neural network design and architecture properties. However, most fitness landscape analysis metrics rely on search space sampling. Since neural network search space is unbounded, it is unclear what subset of the search space should be sampled to obtain representative measurements. This study analyses fitness landscape properties of neural networks under various search space boundaries, and proposes meaningful search space bounds for neural network fitness landscape analysis.","PeriodicalId":120288,"journal":{"name":"2016 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Search space boundaries in neural network error landscape analysis\",\"authors\":\"Anna Sergeevna Bosman, A. Engelbrecht, Mardé Helbig\",\"doi\":\"10.1109/SSCI.2016.7850152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fitness landscape analysis encompasses a selection of techniques designed to estimate the properties of a search landscape associated with an optimisation problem. Applied to neural network training, fitness landscape analysis can be used to establish the link between the shape of the objective function and various neural network design and architecture properties. However, most fitness landscape analysis metrics rely on search space sampling. Since neural network search space is unbounded, it is unclear what subset of the search space should be sampled to obtain representative measurements. This study analyses fitness landscape properties of neural networks under various search space boundaries, and proposes meaningful search space bounds for neural network fitness landscape analysis.\",\"PeriodicalId\":120288,\"journal\":{\"name\":\"2016 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSCI.2016.7850152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI.2016.7850152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

适应度景观分析包含了一系列技术,旨在估计与优化问题相关的搜索景观的属性。应用于神经网络训练,适应度景观分析可以用来建立目标函数的形状与各种神经网络设计和架构属性之间的联系。然而,大多数适应度景观分析指标依赖于搜索空间采样。由于神经网络搜索空间是无界的,因此不清楚应该对搜索空间的哪个子集进行采样以获得有代表性的测量值。本研究分析了不同搜索空间边界下神经网络的适应度景观特性,提出了有意义的神经网络适应度景观分析的搜索空间边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Search space boundaries in neural network error landscape analysis
Fitness landscape analysis encompasses a selection of techniques designed to estimate the properties of a search landscape associated with an optimisation problem. Applied to neural network training, fitness landscape analysis can be used to establish the link between the shape of the objective function and various neural network design and architecture properties. However, most fitness landscape analysis metrics rely on search space sampling. Since neural network search space is unbounded, it is unclear what subset of the search space should be sampled to obtain representative measurements. This study analyses fitness landscape properties of neural networks under various search space boundaries, and proposes meaningful search space bounds for neural network fitness landscape analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信