M. Naveed, D. Kitchin, A. Crampton, L. Chrpa, P. Gregory
{"title":"动态和部分可观察环境的蒙特卡罗路径规划器","authors":"M. Naveed, D. Kitchin, A. Crampton, L. Chrpa, P. Gregory","doi":"10.1109/CIG.2012.6374158","DOIUrl":null,"url":null,"abstract":"In this paper, we present a Monte-Carlo policy rollout technique (called MOCART-CGA) for path planning in dynamic and partially observable real-time environments such as Real-time Strategy games. The emphasis is put on fast action selection motivating the use of Monte-Carlo techniques in MOCART-CGA. Exploration of the space is guided by using corridors which direct simulations in the neighbourhood of the best found moves. MOCART-CGA limits how many times a particular state-action pair is explored to balance exploration of the neighbourhood of the state and exploitation of promising actions. MOCART-CGA is evaluated using four standard pathfinding benchmark maps, and over 1000 instances. The empirical results show that MOCART-CGA outperforms existing techniques, in terms of search time, in dynamic and partially observable environments. Experiments have also been performed in static (and partially observable) environments where MOCART-CGA still requires less time to search than its competitors, but typically finds lower quality plans.","PeriodicalId":288052,"journal":{"name":"2012 IEEE Conference on Computational Intelligence and Games (CIG)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A Monte-Carlo path planner for dynamic and partially observable environments\",\"authors\":\"M. Naveed, D. Kitchin, A. Crampton, L. Chrpa, P. Gregory\",\"doi\":\"10.1109/CIG.2012.6374158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a Monte-Carlo policy rollout technique (called MOCART-CGA) for path planning in dynamic and partially observable real-time environments such as Real-time Strategy games. The emphasis is put on fast action selection motivating the use of Monte-Carlo techniques in MOCART-CGA. Exploration of the space is guided by using corridors which direct simulations in the neighbourhood of the best found moves. MOCART-CGA limits how many times a particular state-action pair is explored to balance exploration of the neighbourhood of the state and exploitation of promising actions. MOCART-CGA is evaluated using four standard pathfinding benchmark maps, and over 1000 instances. The empirical results show that MOCART-CGA outperforms existing techniques, in terms of search time, in dynamic and partially observable environments. Experiments have also been performed in static (and partially observable) environments where MOCART-CGA still requires less time to search than its competitors, but typically finds lower quality plans.\",\"PeriodicalId\":288052,\"journal\":{\"name\":\"2012 IEEE Conference on Computational Intelligence and Games (CIG)\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Conference on Computational Intelligence and Games (CIG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIG.2012.6374158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Conference on Computational Intelligence and Games (CIG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2012.6374158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Monte-Carlo path planner for dynamic and partially observable environments
In this paper, we present a Monte-Carlo policy rollout technique (called MOCART-CGA) for path planning in dynamic and partially observable real-time environments such as Real-time Strategy games. The emphasis is put on fast action selection motivating the use of Monte-Carlo techniques in MOCART-CGA. Exploration of the space is guided by using corridors which direct simulations in the neighbourhood of the best found moves. MOCART-CGA limits how many times a particular state-action pair is explored to balance exploration of the neighbourhood of the state and exploitation of promising actions. MOCART-CGA is evaluated using four standard pathfinding benchmark maps, and over 1000 instances. The empirical results show that MOCART-CGA outperforms existing techniques, in terms of search time, in dynamic and partially observable environments. Experiments have also been performed in static (and partially observable) environments where MOCART-CGA still requires less time to search than its competitors, but typically finds lower quality plans.