使用可穿戴传感器的深度人类活动识别

I. A. Lawal, Sophia Bano
{"title":"使用可穿戴传感器的深度人类活动识别","authors":"I. A. Lawal, Sophia Bano","doi":"10.1145/3316782.3321538","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of classifying motion signals acquired via wearable sensors for the recognition of human activity. Automatic and accurate classification of motion signals is important in facilitating the development of an effective automated health monitoring system for the elderlies. Thus, we gathered hip motion signals from two different waist mounted sensors and for each individual sensor, we converted the motion signal into spectral image sequence. We use these images as inputs to independently train two Convolutional Neural Networks (CNN), one for each of the generated image sequences from the two sensors. The outputs of the trained CNNs are then fused together to predict the final class of the human activity. We evaluate the performance of the proposed method using the cross-subjects testing approach. Our method achieves recognition accuracy (F1 score) of 0.87 on a publicly available real-world human activity dataset. This performance is superior to that reported by another state-of-the-art method on the same dataset.","PeriodicalId":264425,"journal":{"name":"Proceedings of the 12th ACM International Conference on PErvasive Technologies Related to Assistive Environments","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Deep human activity recognition using wearable sensors\",\"authors\":\"I. A. Lawal, Sophia Bano\",\"doi\":\"10.1145/3316782.3321538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the problem of classifying motion signals acquired via wearable sensors for the recognition of human activity. Automatic and accurate classification of motion signals is important in facilitating the development of an effective automated health monitoring system for the elderlies. Thus, we gathered hip motion signals from two different waist mounted sensors and for each individual sensor, we converted the motion signal into spectral image sequence. We use these images as inputs to independently train two Convolutional Neural Networks (CNN), one for each of the generated image sequences from the two sensors. The outputs of the trained CNNs are then fused together to predict the final class of the human activity. We evaluate the performance of the proposed method using the cross-subjects testing approach. Our method achieves recognition accuracy (F1 score) of 0.87 on a publicly available real-world human activity dataset. This performance is superior to that reported by another state-of-the-art method on the same dataset.\",\"PeriodicalId\":264425,\"journal\":{\"name\":\"Proceedings of the 12th ACM International Conference on PErvasive Technologies Related to Assistive Environments\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th ACM International Conference on PErvasive Technologies Related to Assistive Environments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3316782.3321538\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th ACM International Conference on PErvasive Technologies Related to Assistive Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3316782.3321538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

本文研究了通过可穿戴传感器获取的运动信号的分类问题,用于人体活动的识别。运动信号的自动准确分类对于促进有效的老年人自动健康监测系统的发展至关重要。因此,我们从两个不同的腰部传感器收集髋关节运动信号,并对每个单独的传感器,我们将运动信号转换成光谱图像序列。我们使用这些图像作为独立训练两个卷积神经网络(CNN)的输入,每个卷积神经网络用于从两个传感器生成的图像序列。然后将训练好的cnn的输出融合在一起,以预测人类活动的最终类别。我们使用跨主题测试方法评估所提出方法的性能。我们的方法在公开可用的真实世界人类活动数据集上实现了0.87的识别精度(F1分数)。这种性能优于同一数据集上另一种最先进的方法所报告的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep human activity recognition using wearable sensors
This paper addresses the problem of classifying motion signals acquired via wearable sensors for the recognition of human activity. Automatic and accurate classification of motion signals is important in facilitating the development of an effective automated health monitoring system for the elderlies. Thus, we gathered hip motion signals from two different waist mounted sensors and for each individual sensor, we converted the motion signal into spectral image sequence. We use these images as inputs to independently train two Convolutional Neural Networks (CNN), one for each of the generated image sequences from the two sensors. The outputs of the trained CNNs are then fused together to predict the final class of the human activity. We evaluate the performance of the proposed method using the cross-subjects testing approach. Our method achieves recognition accuracy (F1 score) of 0.87 on a publicly available real-world human activity dataset. This performance is superior to that reported by another state-of-the-art method on the same dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信