{"title":"E-Falco电动汽车2 KW无刷直流电机变速转矩分析","authors":"Bambang Darmono, H. Pranoto, Z. Arifin","doi":"10.37869/ijatec.v2i2.47","DOIUrl":null,"url":null,"abstract":"The motor releases torque and power to drive an electric car by carrying the load from a start position until it travels at the desired speed. The KMLI E-Falco electric car uses a BLDC type electric motor with a power capacity of 2 kW. To find out the amount of torque of a 2 kW BLDC motor when driving with variations in speed, it can be done by manual calculations using the torque equation and doing a dynotest test. The dynotest results show that the motor torque at the speed: 1 km/h is 1 Nm, 10 km/h is 131 Nm, 13 km/h is 228 Nm, 20 km/h is 225 Nm, 30 km/h is 219 Nm, 40 km / h is 188 Nm, 50 km / hour is 145 Nm, 60 km / h is 113 Nm, and 70 km / h is 85 Nm. From the results of the dynotest, it shows that the peak torque occurs at a speed of 13 km / h at 228 Nm. Racing software installed in the controller can increase the motor torque by four times at a speed variation of 13-70 km/h based on the results of the dynotest above. Keywords: motor, BLDC, torque, speed, acceleration.","PeriodicalId":365201,"journal":{"name":"International Journal of Advanced Technology in Mechanical, Mechatronics and Materials","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Torque Analysis of 2 KW BLDC (Brushless Direct Current) Motor with Speed Variations in Electric Cars E-Falco\",\"authors\":\"Bambang Darmono, H. Pranoto, Z. Arifin\",\"doi\":\"10.37869/ijatec.v2i2.47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The motor releases torque and power to drive an electric car by carrying the load from a start position until it travels at the desired speed. The KMLI E-Falco electric car uses a BLDC type electric motor with a power capacity of 2 kW. To find out the amount of torque of a 2 kW BLDC motor when driving with variations in speed, it can be done by manual calculations using the torque equation and doing a dynotest test. The dynotest results show that the motor torque at the speed: 1 km/h is 1 Nm, 10 km/h is 131 Nm, 13 km/h is 228 Nm, 20 km/h is 225 Nm, 30 km/h is 219 Nm, 40 km / h is 188 Nm, 50 km / hour is 145 Nm, 60 km / h is 113 Nm, and 70 km / h is 85 Nm. From the results of the dynotest, it shows that the peak torque occurs at a speed of 13 km / h at 228 Nm. Racing software installed in the controller can increase the motor torque by four times at a speed variation of 13-70 km/h based on the results of the dynotest above. Keywords: motor, BLDC, torque, speed, acceleration.\",\"PeriodicalId\":365201,\"journal\":{\"name\":\"International Journal of Advanced Technology in Mechanical, Mechatronics and Materials\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Technology in Mechanical, Mechatronics and Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37869/ijatec.v2i2.47\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Technology in Mechanical, Mechatronics and Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37869/ijatec.v2i2.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Torque Analysis of 2 KW BLDC (Brushless Direct Current) Motor with Speed Variations in Electric Cars E-Falco
The motor releases torque and power to drive an electric car by carrying the load from a start position until it travels at the desired speed. The KMLI E-Falco electric car uses a BLDC type electric motor with a power capacity of 2 kW. To find out the amount of torque of a 2 kW BLDC motor when driving with variations in speed, it can be done by manual calculations using the torque equation and doing a dynotest test. The dynotest results show that the motor torque at the speed: 1 km/h is 1 Nm, 10 km/h is 131 Nm, 13 km/h is 228 Nm, 20 km/h is 225 Nm, 30 km/h is 219 Nm, 40 km / h is 188 Nm, 50 km / hour is 145 Nm, 60 km / h is 113 Nm, and 70 km / h is 85 Nm. From the results of the dynotest, it shows that the peak torque occurs at a speed of 13 km / h at 228 Nm. Racing software installed in the controller can increase the motor torque by four times at a speed variation of 13-70 km/h based on the results of the dynotest above. Keywords: motor, BLDC, torque, speed, acceleration.