三角Shepard插值法的并行实现

F. Dell’Accio, F. D. Tommaso, Andrea Giordano, R. Rongo, W. Spataro
{"title":"三角Shepard插值法的并行实现","authors":"F. Dell’Accio, F. D. Tommaso, Andrea Giordano, R. Rongo, W. Spataro","doi":"10.1109/pdp55904.2022.00044","DOIUrl":null,"url":null,"abstract":"The triangular Shepard interpolation method is an extension of the well-known bivariate Shepard’s method for interpolating large sets of scattered data. In particular, the classical point-based weight functions are substituted by basis functions built upon triangulation of the scattered points. As shown in the literature, this method exhibits advantages with respect to other interpolation methods for interpolating scattered bivariate data. Nevertheless, as the size of the data set increases, an efficient implementation of the method becomes more and more necessary. In this paper, we present a parallel implementation of the triangular Shepard interpolation method that beside exploiting benefits due to the parallelization itself, introduces a novel approach for the triangulation of the scattered data.","PeriodicalId":210759,"journal":{"name":"2022 30th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Parallel Implementation of the Triangular Shepard Interpolation Method\",\"authors\":\"F. Dell’Accio, F. D. Tommaso, Andrea Giordano, R. Rongo, W. Spataro\",\"doi\":\"10.1109/pdp55904.2022.00044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The triangular Shepard interpolation method is an extension of the well-known bivariate Shepard’s method for interpolating large sets of scattered data. In particular, the classical point-based weight functions are substituted by basis functions built upon triangulation of the scattered points. As shown in the literature, this method exhibits advantages with respect to other interpolation methods for interpolating scattered bivariate data. Nevertheless, as the size of the data set increases, an efficient implementation of the method becomes more and more necessary. In this paper, we present a parallel implementation of the triangular Shepard interpolation method that beside exploiting benefits due to the parallelization itself, introduces a novel approach for the triangulation of the scattered data.\",\"PeriodicalId\":210759,\"journal\":{\"name\":\"2022 30th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 30th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/pdp55904.2022.00044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/pdp55904.2022.00044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

三角Shepard插值方法是对众所周知的二元Shepard插值方法的扩展,用于插值大量分散数据集。特别地,经典的基于点的权重函数被基于散点三角剖分的基函数所取代。如文献所示,相对于其他插值方法,该方法在插值离散二元数据方面具有优势。然而,随着数据集规模的增加,该方法的有效实现变得越来越必要。在本文中,我们提出了一种三角形Shepard插值方法的并行实现,该方法除了利用并行化本身的优点外,还引入了一种新的方法来对分散数据进行三角剖分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Parallel Implementation of the Triangular Shepard Interpolation Method
The triangular Shepard interpolation method is an extension of the well-known bivariate Shepard’s method for interpolating large sets of scattered data. In particular, the classical point-based weight functions are substituted by basis functions built upon triangulation of the scattered points. As shown in the literature, this method exhibits advantages with respect to other interpolation methods for interpolating scattered bivariate data. Nevertheless, as the size of the data set increases, an efficient implementation of the method becomes more and more necessary. In this paper, we present a parallel implementation of the triangular Shepard interpolation method that beside exploiting benefits due to the parallelization itself, introduces a novel approach for the triangulation of the scattered data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信