利用局部数据不确定性提高全局异常值检测

Bo Liu, Jie Yin, Yanshan Xiao, Longbing Cao, Philip S. Yu
{"title":"利用局部数据不确定性提高全局异常值检测","authors":"Bo Liu, Jie Yin, Yanshan Xiao, Longbing Cao, Philip S. Yu","doi":"10.1109/ICDM.2010.10","DOIUrl":null,"url":null,"abstract":"This paper presents a novel hybrid approach to outlier detection by incorporating local data uncertainty into the construction of a global classifier. To deal with local data uncertainty, we introduce a confidence value to each data example in the training data, which measures the strength of the corresponding class label. Our proposed method works in two steps. Firstly, we generate a pseudo training dataset by computing a confidence value of each input example on its class label. We present two different mechanisms: kernel k-means clustering algorithm and kernel LOF-based algorithm, to compute the confidence values based on the local data behavior. Secondly, we construct a global classifier for outlier detection by generalizing the SVDD-based learning framework to incorporate both positive and negative examples as well as their associated confidence values. By integrating local and global outlier detection, our proposed method explicitly handles the uncertainty of the input data and enhances the ability of SVDD in reducing the sensitivity to noise. Extensive experiments on real life datasets demonstrate that our proposed method can achieve a better tradeoff between detection rate and false alarm rate as compared to four state-of-the-art outlier detection algorithms.","PeriodicalId":294061,"journal":{"name":"2010 IEEE International Conference on Data Mining","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Exploiting Local Data Uncertainty to Boost Global Outlier Detection\",\"authors\":\"Bo Liu, Jie Yin, Yanshan Xiao, Longbing Cao, Philip S. Yu\",\"doi\":\"10.1109/ICDM.2010.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel hybrid approach to outlier detection by incorporating local data uncertainty into the construction of a global classifier. To deal with local data uncertainty, we introduce a confidence value to each data example in the training data, which measures the strength of the corresponding class label. Our proposed method works in two steps. Firstly, we generate a pseudo training dataset by computing a confidence value of each input example on its class label. We present two different mechanisms: kernel k-means clustering algorithm and kernel LOF-based algorithm, to compute the confidence values based on the local data behavior. Secondly, we construct a global classifier for outlier detection by generalizing the SVDD-based learning framework to incorporate both positive and negative examples as well as their associated confidence values. By integrating local and global outlier detection, our proposed method explicitly handles the uncertainty of the input data and enhances the ability of SVDD in reducing the sensitivity to noise. Extensive experiments on real life datasets demonstrate that our proposed method can achieve a better tradeoff between detection rate and false alarm rate as compared to four state-of-the-art outlier detection algorithms.\",\"PeriodicalId\":294061,\"journal\":{\"name\":\"2010 IEEE International Conference on Data Mining\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2010.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2010.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

本文提出了一种新的混合方法,通过将局部数据的不确定性纳入到全局分类器的构建中来检测异常值。为了处理局部数据的不确定性,我们为训练数据中的每个数据样例引入一个置信度值,该置信度值度量相应类标签的强度。我们提出的方法分为两个步骤。首先,我们通过计算每个输入样本在其类标签上的置信度值来生成伪训练数据集。我们提出了两种不同的机制:核k-means聚类算法和基于核lof的算法,来计算基于局部数据行为的置信度值。其次,我们通过推广基于svdd的学习框架来构建一个全局分类器,用于异常值检测,以包含正、负示例及其相关置信度值。该方法结合局部和全局离群点检测,明确处理了输入数据的不确定性,增强了奇异向量分解算法降低噪声敏感性的能力。在真实数据集上的大量实验表明,与四种最先进的离群值检测算法相比,我们提出的方法可以在检测率和虚警率之间实现更好的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploiting Local Data Uncertainty to Boost Global Outlier Detection
This paper presents a novel hybrid approach to outlier detection by incorporating local data uncertainty into the construction of a global classifier. To deal with local data uncertainty, we introduce a confidence value to each data example in the training data, which measures the strength of the corresponding class label. Our proposed method works in two steps. Firstly, we generate a pseudo training dataset by computing a confidence value of each input example on its class label. We present two different mechanisms: kernel k-means clustering algorithm and kernel LOF-based algorithm, to compute the confidence values based on the local data behavior. Secondly, we construct a global classifier for outlier detection by generalizing the SVDD-based learning framework to incorporate both positive and negative examples as well as their associated confidence values. By integrating local and global outlier detection, our proposed method explicitly handles the uncertainty of the input data and enhances the ability of SVDD in reducing the sensitivity to noise. Extensive experiments on real life datasets demonstrate that our proposed method can achieve a better tradeoff between detection rate and false alarm rate as compared to four state-of-the-art outlier detection algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信