{"title":"黄海和东海海平面的长期变化","authors":"Ying Xu, Mingsen Lin, Q. Zheng","doi":"10.5772/INTECHOPEN.80735","DOIUrl":null,"url":null,"abstract":"Using the satellite altimeter maps of sea level anomaly (MSLA) and tidal gauge data, this chapter gives an investigation of the long-term sea level variability (SLV) and sea level rise (SLR) rate in the Yellow Sea (YS) and East China Sea (ECS). Correlation analysis shows that the satellite altimeter is effective and capable of revealing the coastal SLV. To investigate the regional correlation of SLV in the YS and ECS, tidal gauge station data are used as references. Based on the monthly maps of correlation coefficient (CC) of SLV at tidal stations with the gridded MSLA data, we find that the existence of Kuroshio decreases the correlation between the coastal and Pacific sea levels. The empirical mode decomposition (EMD) method is applied to derive the SLR trend on each MSLA grid point in the YS and ECS. According to the two-dimensional geographical distribution of the SLR rate, one can see that the sea level on the eastern side of the Kuroshio mainstream rises faster than that on the western side. Both the YS and ECS SLR rates averaged over 1993–2010 are slower than the globally averaged SLR rate. This implies that although the SLV in the two seas is affected by global climate change, it could be mostly influenced by local effects.","PeriodicalId":221163,"journal":{"name":"Coastal Environment, Disaster, and Infrastructure - A Case Study of China's Coastline","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-Term Sea Level Variability in the Yellow Sea and East China Sea\",\"authors\":\"Ying Xu, Mingsen Lin, Q. Zheng\",\"doi\":\"10.5772/INTECHOPEN.80735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using the satellite altimeter maps of sea level anomaly (MSLA) and tidal gauge data, this chapter gives an investigation of the long-term sea level variability (SLV) and sea level rise (SLR) rate in the Yellow Sea (YS) and East China Sea (ECS). Correlation analysis shows that the satellite altimeter is effective and capable of revealing the coastal SLV. To investigate the regional correlation of SLV in the YS and ECS, tidal gauge station data are used as references. Based on the monthly maps of correlation coefficient (CC) of SLV at tidal stations with the gridded MSLA data, we find that the existence of Kuroshio decreases the correlation between the coastal and Pacific sea levels. The empirical mode decomposition (EMD) method is applied to derive the SLR trend on each MSLA grid point in the YS and ECS. According to the two-dimensional geographical distribution of the SLR rate, one can see that the sea level on the eastern side of the Kuroshio mainstream rises faster than that on the western side. Both the YS and ECS SLR rates averaged over 1993–2010 are slower than the globally averaged SLR rate. This implies that although the SLV in the two seas is affected by global climate change, it could be mostly influenced by local effects.\",\"PeriodicalId\":221163,\"journal\":{\"name\":\"Coastal Environment, Disaster, and Infrastructure - A Case Study of China's Coastline\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coastal Environment, Disaster, and Infrastructure - A Case Study of China's Coastline\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.80735\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coastal Environment, Disaster, and Infrastructure - A Case Study of China's Coastline","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.80735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Long-Term Sea Level Variability in the Yellow Sea and East China Sea
Using the satellite altimeter maps of sea level anomaly (MSLA) and tidal gauge data, this chapter gives an investigation of the long-term sea level variability (SLV) and sea level rise (SLR) rate in the Yellow Sea (YS) and East China Sea (ECS). Correlation analysis shows that the satellite altimeter is effective and capable of revealing the coastal SLV. To investigate the regional correlation of SLV in the YS and ECS, tidal gauge station data are used as references. Based on the monthly maps of correlation coefficient (CC) of SLV at tidal stations with the gridded MSLA data, we find that the existence of Kuroshio decreases the correlation between the coastal and Pacific sea levels. The empirical mode decomposition (EMD) method is applied to derive the SLR trend on each MSLA grid point in the YS and ECS. According to the two-dimensional geographical distribution of the SLR rate, one can see that the sea level on the eastern side of the Kuroshio mainstream rises faster than that on the western side. Both the YS and ECS SLR rates averaged over 1993–2010 are slower than the globally averaged SLR rate. This implies that although the SLV in the two seas is affected by global climate change, it could be mostly influenced by local effects.