3.非欧几里得的几何学

M. Dunajski
{"title":"3.非欧几里得的几何学","authors":"M. Dunajski","doi":"10.1093/actrade/9780199683680.003.0003","DOIUrl":null,"url":null,"abstract":"‘Non-Euclidean geometry’ begins with a discussion on spherical geometry, which is the study of objects on the sphere and has lines that are defined as great circles. Spherical geometry is an example of a non-Euclidean geometry, as the lines do not satisfy Euclid’s parallel postulate. Hyperbolic geometry is another example of a non-Euclidean geometry, as it violates the parallel axiom and cannot be embedded in ordinary space. Hyperbolic geometry can be introduced as an abstract surface wherein lines are singled out and the distance which makes these lines the shortest are shown. With hyperbolic geometry, the apparent paradoxes of M. C. Escher’s angels and devils can be revealed.","PeriodicalId":420147,"journal":{"name":"Geometry: A Very Short Introduction","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3. Non-Euclidean geometry\",\"authors\":\"M. Dunajski\",\"doi\":\"10.1093/actrade/9780199683680.003.0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"‘Non-Euclidean geometry’ begins with a discussion on spherical geometry, which is the study of objects on the sphere and has lines that are defined as great circles. Spherical geometry is an example of a non-Euclidean geometry, as the lines do not satisfy Euclid’s parallel postulate. Hyperbolic geometry is another example of a non-Euclidean geometry, as it violates the parallel axiom and cannot be embedded in ordinary space. Hyperbolic geometry can be introduced as an abstract surface wherein lines are singled out and the distance which makes these lines the shortest are shown. With hyperbolic geometry, the apparent paradoxes of M. C. Escher’s angels and devils can be revealed.\",\"PeriodicalId\":420147,\"journal\":{\"name\":\"Geometry: A Very Short Introduction\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry: A Very Short Introduction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/actrade/9780199683680.003.0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry: A Very Short Introduction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/actrade/9780199683680.003.0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

“非欧几里得几何”从讨论球面几何开始,球面几何是对球面上物体的研究,其线被定义为大圆。球面几何是非欧几里得几何的一个例子,因为直线不满足欧几里得的平行假设。双曲几何是非欧几里得几何的另一个例子,因为它违反了平行公理,不能嵌入普通空间。双曲几何可以作为一个抽象的曲面来介绍,其中的线被挑出来,并显示出使这些线最短的距离。借助双曲几何,埃舍尔笔下的天使与魔鬼之间明显的悖论得以揭示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3. Non-Euclidean geometry
‘Non-Euclidean geometry’ begins with a discussion on spherical geometry, which is the study of objects on the sphere and has lines that are defined as great circles. Spherical geometry is an example of a non-Euclidean geometry, as the lines do not satisfy Euclid’s parallel postulate. Hyperbolic geometry is another example of a non-Euclidean geometry, as it violates the parallel axiom and cannot be embedded in ordinary space. Hyperbolic geometry can be introduced as an abstract surface wherein lines are singled out and the distance which makes these lines the shortest are shown. With hyperbolic geometry, the apparent paradoxes of M. C. Escher’s angels and devils can be revealed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信