基于区域的高性能计算应用能量感知调谐的DVFS和UFS建模

Mohak Chadha, M. Gerndt
{"title":"基于区域的高性能计算应用能量感知调谐的DVFS和UFS建模","authors":"Mohak Chadha, M. Gerndt","doi":"10.1109/IPDPS.2019.00089","DOIUrl":null,"url":null,"abstract":"Energy efficiency and energy conservation are one of the most crucial constraints for meeting the 20MW power envelope desired for exascale systems. Towards this, most of the research in this area has been focused on the utilization of user-controllable hardware switches such as per-core dynamic voltage frequency scaling (DVFS) and software controlled clock modulation at the application level. In this paper, we present a tuning plugin for the Periscope Tuning Framework which integrates fine-grained autotuning at the region level with DVFS and uncore frequency scaling (UFS). The tuning is based on a feed-forward neural network which is formulated using Performance Monitoring Counters (PMC) supported by x86 systems and trained using standardized benchmarks. Experiments on five standardized hybrid benchmarks show an energy improvement of 16.1% on average when the applications are tuned according to our methodology as compared to 7.8% for static tuning.","PeriodicalId":403406,"journal":{"name":"2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Modelling DVFS and UFS for Region-Based Energy Aware Tuning of HPC Applications\",\"authors\":\"Mohak Chadha, M. Gerndt\",\"doi\":\"10.1109/IPDPS.2019.00089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Energy efficiency and energy conservation are one of the most crucial constraints for meeting the 20MW power envelope desired for exascale systems. Towards this, most of the research in this area has been focused on the utilization of user-controllable hardware switches such as per-core dynamic voltage frequency scaling (DVFS) and software controlled clock modulation at the application level. In this paper, we present a tuning plugin for the Periscope Tuning Framework which integrates fine-grained autotuning at the region level with DVFS and uncore frequency scaling (UFS). The tuning is based on a feed-forward neural network which is formulated using Performance Monitoring Counters (PMC) supported by x86 systems and trained using standardized benchmarks. Experiments on five standardized hybrid benchmarks show an energy improvement of 16.1% on average when the applications are tuned according to our methodology as compared to 7.8% for static tuning.\",\"PeriodicalId\":403406,\"journal\":{\"name\":\"2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPS.2019.00089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2019.00089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

能源效率和节能是满足百亿亿级系统所需的20MW功率信封的最关键限制之一。为此,该领域的大部分研究都集中在用户可控硬件开关的利用上,如在应用层面上的每核动态电压频率缩放(DVFS)和软件控制时钟调制。在本文中,我们提出了一个用于Periscope调优框架的调优插件,它将区域级的细粒度自动调优与DVFS和非核心频率缩放(UFS)相结合。调优基于前馈神经网络,该网络使用x86系统支持的性能监控计数器(PMC)制定,并使用标准化基准进行训练。在五个标准化混合基准测试上进行的实验表明,根据我们的方法对应用程序进行调优时,能耗平均提高16.1%,而静态调优则为7.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modelling DVFS and UFS for Region-Based Energy Aware Tuning of HPC Applications
Energy efficiency and energy conservation are one of the most crucial constraints for meeting the 20MW power envelope desired for exascale systems. Towards this, most of the research in this area has been focused on the utilization of user-controllable hardware switches such as per-core dynamic voltage frequency scaling (DVFS) and software controlled clock modulation at the application level. In this paper, we present a tuning plugin for the Periscope Tuning Framework which integrates fine-grained autotuning at the region level with DVFS and uncore frequency scaling (UFS). The tuning is based on a feed-forward neural network which is formulated using Performance Monitoring Counters (PMC) supported by x86 systems and trained using standardized benchmarks. Experiments on five standardized hybrid benchmarks show an energy improvement of 16.1% on average when the applications are tuned according to our methodology as compared to 7.8% for static tuning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信