基于模型边缘跟踪的低对比度图像分割

C. Hudy, J. Campbell, J. Slater
{"title":"基于模型边缘跟踪的低对比度图像分割","authors":"C. Hudy, J. Campbell, J. Slater","doi":"10.1109/IMVIP.2007.28","DOIUrl":null,"url":null,"abstract":"Segmentation is a significant preliminary step for many image-based object recognition activities. Microscopy images often present segmentation problems, namely low contrast (the objects are translucent) and occlusions. Fortunately, translucency provides some possibility of solving the occlusion problem; edge-based methods can be used to tackle the low contrast (translucency) problem, but the edges are noisy and edge tracking must be used. In occluded regions edges can be very faint and noise and conflicting edges can confuse even edge tracking: an edge contour containing gaps may result. This poster presents work on a gap filling algorithm that uses model-based prediction to augment noisy edge data.","PeriodicalId":249544,"journal":{"name":"International Machine Vision and Image Processing Conference (IMVIP 2007)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Model-based Edge Tracking for Segmentation of Low Contrast Images\",\"authors\":\"C. Hudy, J. Campbell, J. Slater\",\"doi\":\"10.1109/IMVIP.2007.28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Segmentation is a significant preliminary step for many image-based object recognition activities. Microscopy images often present segmentation problems, namely low contrast (the objects are translucent) and occlusions. Fortunately, translucency provides some possibility of solving the occlusion problem; edge-based methods can be used to tackle the low contrast (translucency) problem, but the edges are noisy and edge tracking must be used. In occluded regions edges can be very faint and noise and conflicting edges can confuse even edge tracking: an edge contour containing gaps may result. This poster presents work on a gap filling algorithm that uses model-based prediction to augment noisy edge data.\",\"PeriodicalId\":249544,\"journal\":{\"name\":\"International Machine Vision and Image Processing Conference (IMVIP 2007)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Machine Vision and Image Processing Conference (IMVIP 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMVIP.2007.28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Machine Vision and Image Processing Conference (IMVIP 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMVIP.2007.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

分割是许多基于图像的目标识别活动的重要步骤。显微镜图像经常出现分割问题,即低对比度(物体是半透明的)和闭塞。幸运的是,半透明提供了一些解决遮挡问题的可能性;基于边缘的方法可以用来解决低对比度(半透明)问题,但边缘有噪声,必须使用边缘跟踪。在被遮挡的区域,边缘可能非常模糊,噪声和冲突的边缘甚至会混淆边缘跟踪:可能会产生包含间隙的边缘轮廓。这张海报展示了一种使用基于模型的预测来增强噪声边缘数据的间隙填充算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model-based Edge Tracking for Segmentation of Low Contrast Images
Segmentation is a significant preliminary step for many image-based object recognition activities. Microscopy images often present segmentation problems, namely low contrast (the objects are translucent) and occlusions. Fortunately, translucency provides some possibility of solving the occlusion problem; edge-based methods can be used to tackle the low contrast (translucency) problem, but the edges are noisy and edge tracking must be used. In occluded regions edges can be very faint and noise and conflicting edges can confuse even edge tracking: an edge contour containing gaps may result. This poster presents work on a gap filling algorithm that uses model-based prediction to augment noisy edge data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信