Sukhpreet Kaur, K. S. Mann
{"title":"基于熵优化算法的视网膜血管分割","authors":"Sukhpreet Kaur, K. S. Mann","doi":"10.4018/ijhisi.2020040105","DOIUrl":null,"url":null,"abstract":"Thisarticlepresentsanalgorithmforthesegmentationofretinalbloodvesselsforthedetectionof diabeticretinopathyeyediseases.Thisdiseaseoccursinpatientswithuntreateddiabetesforalongtime. Sincethisdiseaseisrelatedtotheretina,itcaneventuallyleadtovisionimpairment.Theproposed algorithmisasupervisedlearningmethodofbloodvesselssegmentationinwhichtheclassification system is trained with the features that are extracted from the images. The proposed system is implementedontheimagesofDRIVE,STAREandCHASE_DB1databases.Thesegmentationis donebyformingclusterswiththefeaturesofpatterns.Thefeatureswereextractedusingindependent componentanalysisand theclassification isperformedbysupportvectormachines (SVM).The resultsoftheparametersaregroupedbyaccuracy,sensitivity,specificity,positivepredictivevalue, falsepositiverateandarecomparedwithparticleswarmoptimization(PSO),thefireflyoptimization algorithm(FA)andthelionoptimizationalgorithm(LOA). KEywORdS Diabetic Retinopathy, Feature Extraction, Optimization, Retinal Vessels","PeriodicalId":101861,"journal":{"name":"Int. J. Heal. Inf. Syst. Informatics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Retinal Vessel Segmentation Using an Entropy-Based Optimization Algorithm\",\"authors\":\"Sukhpreet Kaur, K. S. Mann\",\"doi\":\"10.4018/ijhisi.2020040105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thisarticlepresentsanalgorithmforthesegmentationofretinalbloodvesselsforthedetectionof diabeticretinopathyeyediseases.Thisdiseaseoccursinpatientswithuntreateddiabetesforalongtime. Sincethisdiseaseisrelatedtotheretina,itcaneventuallyleadtovisionimpairment.Theproposed algorithmisasupervisedlearningmethodofbloodvesselssegmentationinwhichtheclassification system is trained with the features that are extracted from the images. The proposed system is implementedontheimagesofDRIVE,STAREandCHASE_DB1databases.Thesegmentationis donebyformingclusterswiththefeaturesofpatterns.Thefeatureswereextractedusingindependent componentanalysisand theclassification isperformedbysupportvectormachines (SVM).The resultsoftheparametersaregroupedbyaccuracy,sensitivity,specificity,positivepredictivevalue, falsepositiverateandarecomparedwithparticleswarmoptimization(PSO),thefireflyoptimization algorithm(FA)andthelionoptimizationalgorithm(LOA). KEywORdS Diabetic Retinopathy, Feature Extraction, Optimization, Retinal Vessels\",\"PeriodicalId\":101861,\"journal\":{\"name\":\"Int. J. Heal. Inf. Syst. Informatics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Heal. Inf. Syst. Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijhisi.2020040105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Heal. Inf. Syst. Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijhisi.2020040105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Retinal Vessel Segmentation Using an Entropy-Based Optimization Algorithm
Thisarticlepresentsanalgorithmforthesegmentationofretinalbloodvesselsforthedetectionof diabeticretinopathyeyediseases.Thisdiseaseoccursinpatientswithuntreateddiabetesforalongtime. Sincethisdiseaseisrelatedtotheretina,itcaneventuallyleadtovisionimpairment.Theproposed algorithmisasupervisedlearningmethodofbloodvesselssegmentationinwhichtheclassification system is trained with the features that are extracted from the images. The proposed system is implementedontheimagesofDRIVE,STAREandCHASE_DB1databases.Thesegmentationis donebyformingclusterswiththefeaturesofpatterns.Thefeatureswereextractedusingindependent componentanalysisand theclassification isperformedbysupportvectormachines (SVM).The resultsoftheparametersaregroupedbyaccuracy,sensitivity,specificity,positivepredictivevalue, falsepositiverateandarecomparedwithparticleswarmoptimization(PSO),thefireflyoptimization algorithm(FA)andthelionoptimizationalgorithm(LOA). KEywORdS Diabetic Retinopathy, Feature Extraction, Optimization, Retinal Vessels