动作识别的时空慢速自注意网络

Myeongjun Kim, Taehun Kim, Daijin Kim
{"title":"动作识别的时空慢速自注意网络","authors":"Myeongjun Kim, Taehun Kim, Daijin Kim","doi":"10.1109/ICIP40778.2020.9191290","DOIUrl":null,"url":null,"abstract":"We propose Spatio-Temporal SlowFast Self-Attention network for action recognition. Conventional Convolutional Neural Networks have the advantage of capturing the local area of the data. However, to understand a human action, it is appropriate to consider both human and the overall context of given scene. Therefore, we repurpose a self-attention mechanism from Self-Attention GAN (SAGAN) to our model for retrieving global semantic context when making action recognition. Using the self-attention mechanism, we propose a module that can extract four features in video information: spatial information, temporal information, slow action information, and fast action information. We train and test our network on the Atomic Visual Actions (AVA) dataset and show significant frame-AP improvements on 28 categories.","PeriodicalId":405734,"journal":{"name":"2020 IEEE International Conference on Image Processing (ICIP)","volume":"156 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Spatio-Temporal Slowfast Self-Attention Network For Action Recognition\",\"authors\":\"Myeongjun Kim, Taehun Kim, Daijin Kim\",\"doi\":\"10.1109/ICIP40778.2020.9191290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose Spatio-Temporal SlowFast Self-Attention network for action recognition. Conventional Convolutional Neural Networks have the advantage of capturing the local area of the data. However, to understand a human action, it is appropriate to consider both human and the overall context of given scene. Therefore, we repurpose a self-attention mechanism from Self-Attention GAN (SAGAN) to our model for retrieving global semantic context when making action recognition. Using the self-attention mechanism, we propose a module that can extract four features in video information: spatial information, temporal information, slow action information, and fast action information. We train and test our network on the Atomic Visual Actions (AVA) dataset and show significant frame-AP improvements on 28 categories.\",\"PeriodicalId\":405734,\"journal\":{\"name\":\"2020 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"156 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP40778.2020.9191290\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP40778.2020.9191290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

我们提出了一种用于动作识别的时空慢速自注意网络。传统的卷积神经网络具有捕获数据局部区域的优点。然而,为了理解人类的行为,我们应该同时考虑人类和给定场景的整体背景。因此,我们将自注意GAN (SAGAN)中的自注意机制重新应用于我们的模型中,以便在进行动作识别时检索全局语义上下文。利用自注意机制,我们提出了一个模块,可以提取视频信息中的四个特征:空间信息、时间信息、慢动作信息和快动作信息。我们在原子视觉动作(AVA)数据集上训练和测试了我们的网络,并在28个类别上显示了显著的帧ap改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatio-Temporal Slowfast Self-Attention Network For Action Recognition
We propose Spatio-Temporal SlowFast Self-Attention network for action recognition. Conventional Convolutional Neural Networks have the advantage of capturing the local area of the data. However, to understand a human action, it is appropriate to consider both human and the overall context of given scene. Therefore, we repurpose a self-attention mechanism from Self-Attention GAN (SAGAN) to our model for retrieving global semantic context when making action recognition. Using the self-attention mechanism, we propose a module that can extract four features in video information: spatial information, temporal information, slow action information, and fast action information. We train and test our network on the Atomic Visual Actions (AVA) dataset and show significant frame-AP improvements on 28 categories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信