基于对应分析和训练神经网络的人脸识别有效特征选择

Z. Pazoki, F. Farokhi
{"title":"基于对应分析和训练神经网络的人脸识别有效特征选择","authors":"Z. Pazoki, F. Farokhi","doi":"10.1109/SITIS.2010.23","DOIUrl":null,"url":null,"abstract":"this paper presents a face recognition method based on correspondence analysis (CA) and trained artificial neural network. In this algorithm, features are extracted using CA, then these features are fed to Multi layer Perceptron (MLP)network for classification and finally, after training the network, effective features are selected with UTA algorithm. The obtained experimental results indicate high average accuracy (98%) and the minimum run time of the algorithm as well.","PeriodicalId":128396,"journal":{"name":"2010 Sixth International Conference on Signal-Image Technology and Internet Based Systems","volume":"179 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Effective Feature Selection for Face Recognition Based on Correspondence Analysis and Trained Artificial Neural Network\",\"authors\":\"Z. Pazoki, F. Farokhi\",\"doi\":\"10.1109/SITIS.2010.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"this paper presents a face recognition method based on correspondence analysis (CA) and trained artificial neural network. In this algorithm, features are extracted using CA, then these features are fed to Multi layer Perceptron (MLP)network for classification and finally, after training the network, effective features are selected with UTA algorithm. The obtained experimental results indicate high average accuracy (98%) and the minimum run time of the algorithm as well.\",\"PeriodicalId\":128396,\"journal\":{\"name\":\"2010 Sixth International Conference on Signal-Image Technology and Internet Based Systems\",\"volume\":\"179 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Sixth International Conference on Signal-Image Technology and Internet Based Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SITIS.2010.23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Sixth International Conference on Signal-Image Technology and Internet Based Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SITIS.2010.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种基于对应分析(CA)和训练好的人工神经网络的人脸识别方法。该算法首先使用CA提取特征,然后将这些特征馈送到多层感知器(Multi layer Perceptron, MLP)网络中进行分类,最后经过网络训练,使用UTA算法选择有效的特征。实验结果表明,该算法具有较高的平均准确率(98%)和最短的运行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effective Feature Selection for Face Recognition Based on Correspondence Analysis and Trained Artificial Neural Network
this paper presents a face recognition method based on correspondence analysis (CA) and trained artificial neural network. In this algorithm, features are extracted using CA, then these features are fed to Multi layer Perceptron (MLP)network for classification and finally, after training the network, effective features are selected with UTA algorithm. The obtained experimental results indicate high average accuracy (98%) and the minimum run time of the algorithm as well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信