{"title":"基于对应分析和训练神经网络的人脸识别有效特征选择","authors":"Z. Pazoki, F. Farokhi","doi":"10.1109/SITIS.2010.23","DOIUrl":null,"url":null,"abstract":"this paper presents a face recognition method based on correspondence analysis (CA) and trained artificial neural network. In this algorithm, features are extracted using CA, then these features are fed to Multi layer Perceptron (MLP)network for classification and finally, after training the network, effective features are selected with UTA algorithm. The obtained experimental results indicate high average accuracy (98%) and the minimum run time of the algorithm as well.","PeriodicalId":128396,"journal":{"name":"2010 Sixth International Conference on Signal-Image Technology and Internet Based Systems","volume":"179 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Effective Feature Selection for Face Recognition Based on Correspondence Analysis and Trained Artificial Neural Network\",\"authors\":\"Z. Pazoki, F. Farokhi\",\"doi\":\"10.1109/SITIS.2010.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"this paper presents a face recognition method based on correspondence analysis (CA) and trained artificial neural network. In this algorithm, features are extracted using CA, then these features are fed to Multi layer Perceptron (MLP)network for classification and finally, after training the network, effective features are selected with UTA algorithm. The obtained experimental results indicate high average accuracy (98%) and the minimum run time of the algorithm as well.\",\"PeriodicalId\":128396,\"journal\":{\"name\":\"2010 Sixth International Conference on Signal-Image Technology and Internet Based Systems\",\"volume\":\"179 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Sixth International Conference on Signal-Image Technology and Internet Based Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SITIS.2010.23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Sixth International Conference on Signal-Image Technology and Internet Based Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SITIS.2010.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effective Feature Selection for Face Recognition Based on Correspondence Analysis and Trained Artificial Neural Network
this paper presents a face recognition method based on correspondence analysis (CA) and trained artificial neural network. In this algorithm, features are extracted using CA, then these features are fed to Multi layer Perceptron (MLP)network for classification and finally, after training the network, effective features are selected with UTA algorithm. The obtained experimental results indicate high average accuracy (98%) and the minimum run time of the algorithm as well.