基于可拓聚类模型的公交交通量预测

Wenjuan Wang, Yongquan Yu, Shoujian Lan
{"title":"基于可拓聚类模型的公交交通量预测","authors":"Wenjuan Wang, Yongquan Yu, Shoujian Lan","doi":"10.1109/ICACTE.2010.5579051","DOIUrl":null,"url":null,"abstract":"This paper analyze the influential factors of bus traffic volume. Use the concept of matter-element and correlation function to establish prediction model, the prediction results can be obtained by means of cluster analysis. Through analyzing and calculating the historical data of Guangzhou City, the results show that the model in the bus traffic volume is valid.","PeriodicalId":255806,"journal":{"name":"2010 3rd International Conference on Advanced Computer Theory and Engineering(ICACTE)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of bus traffic volume based on extension cluster model\",\"authors\":\"Wenjuan Wang, Yongquan Yu, Shoujian Lan\",\"doi\":\"10.1109/ICACTE.2010.5579051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper analyze the influential factors of bus traffic volume. Use the concept of matter-element and correlation function to establish prediction model, the prediction results can be obtained by means of cluster analysis. Through analyzing and calculating the historical data of Guangzhou City, the results show that the model in the bus traffic volume is valid.\",\"PeriodicalId\":255806,\"journal\":{\"name\":\"2010 3rd International Conference on Advanced Computer Theory and Engineering(ICACTE)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 3rd International Conference on Advanced Computer Theory and Engineering(ICACTE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACTE.2010.5579051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 3rd International Conference on Advanced Computer Theory and Engineering(ICACTE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACTE.2010.5579051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文分析了公共汽车交通量的影响因素。利用物元概念和相关函数建立预测模型,通过聚类分析得到预测结果。通过对广州市历史数据的分析计算,结果表明该模型在公交车交通量方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of bus traffic volume based on extension cluster model
This paper analyze the influential factors of bus traffic volume. Use the concept of matter-element and correlation function to establish prediction model, the prediction results can be obtained by means of cluster analysis. Through analyzing and calculating the historical data of Guangzhou City, the results show that the model in the bus traffic volume is valid.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信