联邦学习中深度神经网络所有权调节的水印协议

Fangqi Li, Shilin Wang, Alan Wee-Chung Liew
{"title":"联邦学习中深度神经网络所有权调节的水印协议","authors":"Fangqi Li, Shilin Wang, Alan Wee-Chung Liew","doi":"10.1109/ICMEW56448.2022.9859395","DOIUrl":null,"url":null,"abstract":"With the wide application of deep learning models, it is important to verify an author’s possession over a deep neural network model by watermarks and protect the model. The development of distributed learning paradigms such as federated learning raises new challenges for model protection. Each author should be able to conduct independent verification and trace traitors. To meet those requirements, we propose a watermarking protocol, Merkle-Sign to meet the prerequisites for ownership verification in federated learning. Our work paves the way for generalizing watermark as a practical security mechanism for protecting deep learning models in distributed learning platforms.","PeriodicalId":106759,"journal":{"name":"2022 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Watermarking Protocol for Deep Neural Network Ownership Regulation in Federated Learning\",\"authors\":\"Fangqi Li, Shilin Wang, Alan Wee-Chung Liew\",\"doi\":\"10.1109/ICMEW56448.2022.9859395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the wide application of deep learning models, it is important to verify an author’s possession over a deep neural network model by watermarks and protect the model. The development of distributed learning paradigms such as federated learning raises new challenges for model protection. Each author should be able to conduct independent verification and trace traitors. To meet those requirements, we propose a watermarking protocol, Merkle-Sign to meet the prerequisites for ownership verification in federated learning. Our work paves the way for generalizing watermark as a practical security mechanism for protecting deep learning models in distributed learning platforms.\",\"PeriodicalId\":106759,\"journal\":{\"name\":\"2022 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMEW56448.2022.9859395\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMEW56448.2022.9859395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

随着深度学习模型的广泛应用,利用水印来验证作者对深度神经网络模型的所有权和对模型的保护变得非常重要。分布式学习范式(如联邦学习)的发展对模型保护提出了新的挑战。每个作者都应该能够进行独立的核查和追踪叛徒。为了满足这些需求,我们提出了一种水印协议,即默克尔签名,以满足联邦学习中所有权验证的先决条件。我们的工作为推广水印作为分布式学习平台中保护深度学习模型的实用安全机制铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Watermarking Protocol for Deep Neural Network Ownership Regulation in Federated Learning
With the wide application of deep learning models, it is important to verify an author’s possession over a deep neural network model by watermarks and protect the model. The development of distributed learning paradigms such as federated learning raises new challenges for model protection. Each author should be able to conduct independent verification and trace traitors. To meet those requirements, we propose a watermarking protocol, Merkle-Sign to meet the prerequisites for ownership verification in federated learning. Our work paves the way for generalizing watermark as a practical security mechanism for protecting deep learning models in distributed learning platforms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信