错误感知数据挖掘

Xingquan Zhu, Xindong Wu
{"title":"错误感知数据挖掘","authors":"Xingquan Zhu, Xindong Wu","doi":"10.1109/GRC.2006.1635795","DOIUrl":null,"url":null,"abstract":"Real-world data mining applications often deal with low-quality information sources where data collection inaccuracy, device limitations, data transmission and discretization errors, or man-made perturbations frequently result in imprecise or vague data. Two common practices are to adopt either data cleansing to enhance data consistency or simply take noisy data as quality sources and feed them into the data mining algorithms. Either way may substantially sacrifice the mining performances. In this paper, we consider an error awareness data mining framework, which takes advantage of statistical error information (such as noise level and noise distribution) to improve data mining results. We assume such noise knowledge is available in advance, and propose a solution to incorporate it into the mining process. More specifically, we use noise knowledge to restore original data distributions, and then use the restored information to modify the model built from noise corrupted data. We present an Error Awareness Naive Bayes (EA_NB) classification algorithm, and provide extensive experimental comparisons to demonstrate the effectiveness of this effort.","PeriodicalId":400997,"journal":{"name":"2006 IEEE International Conference on Granular Computing","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Error awareness data mining\",\"authors\":\"Xingquan Zhu, Xindong Wu\",\"doi\":\"10.1109/GRC.2006.1635795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real-world data mining applications often deal with low-quality information sources where data collection inaccuracy, device limitations, data transmission and discretization errors, or man-made perturbations frequently result in imprecise or vague data. Two common practices are to adopt either data cleansing to enhance data consistency or simply take noisy data as quality sources and feed them into the data mining algorithms. Either way may substantially sacrifice the mining performances. In this paper, we consider an error awareness data mining framework, which takes advantage of statistical error information (such as noise level and noise distribution) to improve data mining results. We assume such noise knowledge is available in advance, and propose a solution to incorporate it into the mining process. More specifically, we use noise knowledge to restore original data distributions, and then use the restored information to modify the model built from noise corrupted data. We present an Error Awareness Naive Bayes (EA_NB) classification algorithm, and provide extensive experimental comparisons to demonstrate the effectiveness of this effort.\",\"PeriodicalId\":400997,\"journal\":{\"name\":\"2006 IEEE International Conference on Granular Computing\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE International Conference on Granular Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GRC.2006.1635795\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Granular Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GRC.2006.1635795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

现实世界的数据挖掘应用通常处理低质量的信息源,其中数据收集不准确,设备限制,数据传输和离散错误,或人为扰动经常导致不精确或模糊的数据。两种常见的做法是采用数据清理来增强数据一致性,或者简单地将有噪声的数据作为高质量的数据源,并将其提供给数据挖掘算法。任何一种方式都可能极大地牺牲挖掘性能。在本文中,我们考虑了一个错误感知数据挖掘框架,该框架利用统计错误信息(如噪声水平和噪声分布)来改进数据挖掘结果。我们假设这些噪声知识是预先可用的,并提出一个将其纳入采矿过程的解决方案。更具体地说,我们使用噪声知识来恢复原始数据分布,然后使用恢复的信息来修改由噪声损坏数据构建的模型。我们提出了一种错误感知朴素贝叶斯(EA_NB)分类算法,并提供了广泛的实验比较来证明这种努力的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Error awareness data mining
Real-world data mining applications often deal with low-quality information sources where data collection inaccuracy, device limitations, data transmission and discretization errors, or man-made perturbations frequently result in imprecise or vague data. Two common practices are to adopt either data cleansing to enhance data consistency or simply take noisy data as quality sources and feed them into the data mining algorithms. Either way may substantially sacrifice the mining performances. In this paper, we consider an error awareness data mining framework, which takes advantage of statistical error information (such as noise level and noise distribution) to improve data mining results. We assume such noise knowledge is available in advance, and propose a solution to incorporate it into the mining process. More specifically, we use noise knowledge to restore original data distributions, and then use the restored information to modify the model built from noise corrupted data. We present an Error Awareness Naive Bayes (EA_NB) classification algorithm, and provide extensive experimental comparisons to demonstrate the effectiveness of this effort.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信