{"title":"基于注视跟踪的多媒体应用幸福感检测可移植性分析","authors":"David Bethge, L. Chuang, T. Große-Puppendahl","doi":"10.1145/3379157.3391655","DOIUrl":null,"url":null,"abstract":"How are strong positive affective states related to eye-tracking features and how can they be used to appropriately enhance well-being in multimedia consumption? In this paper, we propose a robust classification algorithm for predicting strong happy emotions from a large set of features acquired from wearable eye-tracking glasses. We evaluate the potential transferability across subjects and provide a model-agnostic interpretable feature importance metric. Our proposed algorithm achieves a true-positive-rate of 70% while keeping a low false-positive-rate of 10% with extracted features of the pupil diameter as most important features.","PeriodicalId":226088,"journal":{"name":"ACM Symposium on Eye Tracking Research and Applications","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Analyzing Transferability of Happiness Detection via Gaze Tracking in Multimedia Applications\",\"authors\":\"David Bethge, L. Chuang, T. Große-Puppendahl\",\"doi\":\"10.1145/3379157.3391655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"How are strong positive affective states related to eye-tracking features and how can they be used to appropriately enhance well-being in multimedia consumption? In this paper, we propose a robust classification algorithm for predicting strong happy emotions from a large set of features acquired from wearable eye-tracking glasses. We evaluate the potential transferability across subjects and provide a model-agnostic interpretable feature importance metric. Our proposed algorithm achieves a true-positive-rate of 70% while keeping a low false-positive-rate of 10% with extracted features of the pupil diameter as most important features.\",\"PeriodicalId\":226088,\"journal\":{\"name\":\"ACM Symposium on Eye Tracking Research and Applications\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Symposium on Eye Tracking Research and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3379157.3391655\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Symposium on Eye Tracking Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3379157.3391655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analyzing Transferability of Happiness Detection via Gaze Tracking in Multimedia Applications
How are strong positive affective states related to eye-tracking features and how can they be used to appropriately enhance well-being in multimedia consumption? In this paper, we propose a robust classification algorithm for predicting strong happy emotions from a large set of features acquired from wearable eye-tracking glasses. We evaluate the potential transferability across subjects and provide a model-agnostic interpretable feature importance metric. Our proposed algorithm achieves a true-positive-rate of 70% while keeping a low false-positive-rate of 10% with extracted features of the pupil diameter as most important features.