压缩图像中相关图像的联合重建

V. Thirumalai, P. Frossard
{"title":"压缩图像中相关图像的联合重建","authors":"V. Thirumalai, P. Frossard","doi":"10.5281/ZENODO.42811","DOIUrl":null,"url":null,"abstract":"This paper proposesa novel joint reconstruction algorithm to decode sets of correlated images from distributively compressed images. We consider a scenario where the images captured at different viewpoints are encoded independently using transform-based coding solutions (e.g., SPIHT) with a balanced rate distribution among different cameras. A central decoder jointly processes the compressed images and reconstructs an image pair by exploiting the inter-view correlation. The central decoder first estimates the underlying correlation model from the independently decoded images and it is eventually used for the joint signal recovery. The joint reconstruction is cast as a constrained convex optimization problem that reconstructs a total-variation (TV) smooth image pair that satisfies with the estimated correlation model. At the same time, we add constraints that force the reconstructed images to be as close as possible to the compressed views. We show by experiments that the proposed joint reconstruction scheme outperforms independent reconstruction in terms of image quality, for a given target bit rate.","PeriodicalId":201182,"journal":{"name":"2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Joint reconstruction of correlated images from compressed images\",\"authors\":\"V. Thirumalai, P. Frossard\",\"doi\":\"10.5281/ZENODO.42811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposesa novel joint reconstruction algorithm to decode sets of correlated images from distributively compressed images. We consider a scenario where the images captured at different viewpoints are encoded independently using transform-based coding solutions (e.g., SPIHT) with a balanced rate distribution among different cameras. A central decoder jointly processes the compressed images and reconstructs an image pair by exploiting the inter-view correlation. The central decoder first estimates the underlying correlation model from the independently decoded images and it is eventually used for the joint signal recovery. The joint reconstruction is cast as a constrained convex optimization problem that reconstructs a total-variation (TV) smooth image pair that satisfies with the estimated correlation model. At the same time, we add constraints that force the reconstructed images to be as close as possible to the compressed views. We show by experiments that the proposed joint reconstruction scheme outperforms independent reconstruction in terms of image quality, for a given target bit rate.\",\"PeriodicalId\":201182,\"journal\":{\"name\":\"2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.42811\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.42811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种新的联合重构算法,用于从分布式压缩图像中解码相关图像集。我们考虑这样一种场景,即在不同视点捕获的图像使用基于变换的编码解决方案(例如SPIHT)进行独立编码,并在不同相机之间具有均衡的速率分布。中央解码器对压缩后的图像进行联合处理,利用视点间相关性重构图像对。中央解码器首先从独立解码的图像中估计出潜在的相关模型,并最终用于联合信号恢复。将联合重构转化为一个约束凸优化问题,重构出满足估计的相关模型的全变差(TV)平滑图像对。同时,我们增加了约束,使重建图像尽可能接近压缩视图。我们通过实验证明,对于给定的目标比特率,所提出的联合重建方案在图像质量方面优于独立重建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Joint reconstruction of correlated images from compressed images
This paper proposesa novel joint reconstruction algorithm to decode sets of correlated images from distributively compressed images. We consider a scenario where the images captured at different viewpoints are encoded independently using transform-based coding solutions (e.g., SPIHT) with a balanced rate distribution among different cameras. A central decoder jointly processes the compressed images and reconstructs an image pair by exploiting the inter-view correlation. The central decoder first estimates the underlying correlation model from the independently decoded images and it is eventually used for the joint signal recovery. The joint reconstruction is cast as a constrained convex optimization problem that reconstructs a total-variation (TV) smooth image pair that satisfies with the estimated correlation model. At the same time, we add constraints that force the reconstructed images to be as close as possible to the compressed views. We show by experiments that the proposed joint reconstruction scheme outperforms independent reconstruction in terms of image quality, for a given target bit rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信