{"title":"一类非线性复金兹堡-朗道方程的有限时间爆破","authors":"T. Cazenave, S. Snoussi","doi":"10.1017/9781108367639.004","DOIUrl":null,"url":null,"abstract":"In this article, we review finite-time blowup criteria for the family of complex Ginzburg-Landau equations $u_t = e^{ i\\theta } [\\Delta u + |u|^\\alpha u] + \\gamma u$ on ${\\mathbb R}^N $, where $0 \\le \\theta \\le \\frac {\\pi } {2}$, $\\alpha >0$ and $\\gamma \\in {\\mathbb R} $. We study in particular the effect of the parameters $\\theta $ and $\\gamma $, and the dependence of the blowup time on these parameters.","PeriodicalId":286685,"journal":{"name":"Partial Differential Equations Arising from Physics and Geometry","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Finite-time Blowup for some Nonlinear Complex Ginzburg–Landau Equations\",\"authors\":\"T. Cazenave, S. Snoussi\",\"doi\":\"10.1017/9781108367639.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we review finite-time blowup criteria for the family of complex Ginzburg-Landau equations $u_t = e^{ i\\\\theta } [\\\\Delta u + |u|^\\\\alpha u] + \\\\gamma u$ on ${\\\\mathbb R}^N $, where $0 \\\\le \\\\theta \\\\le \\\\frac {\\\\pi } {2}$, $\\\\alpha >0$ and $\\\\gamma \\\\in {\\\\mathbb R} $. We study in particular the effect of the parameters $\\\\theta $ and $\\\\gamma $, and the dependence of the blowup time on these parameters.\",\"PeriodicalId\":286685,\"journal\":{\"name\":\"Partial Differential Equations Arising from Physics and Geometry\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations Arising from Physics and Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/9781108367639.004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations Arising from Physics and Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/9781108367639.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Finite-time Blowup for some Nonlinear Complex Ginzburg–Landau Equations
In this article, we review finite-time blowup criteria for the family of complex Ginzburg-Landau equations $u_t = e^{ i\theta } [\Delta u + |u|^\alpha u] + \gamma u$ on ${\mathbb R}^N $, where $0 \le \theta \le \frac {\pi } {2}$, $\alpha >0$ and $\gamma \in {\mathbb R} $. We study in particular the effect of the parameters $\theta $ and $\gamma $, and the dependence of the blowup time on these parameters.