用机器学习方法处理空腔微扰中的非线性

Z. Akhter, A. Shamim, A. Khusro, A. Jha
{"title":"用机器学习方法处理空腔微扰中的非线性","authors":"Z. Akhter, A. Shamim, A. Khusro, A. Jha","doi":"10.1109/imarc49196.2021.9714577","DOIUrl":null,"url":null,"abstract":"This paper presents a unique design of a cylindrical cavity to identify the dielectric materials with high resolution using the supervised machine learning algorithm. The mountable design of an aluminum-based cylindrical cavity records a quality factor of more than 9000 and provides an easy assembly of samples to be tested. The linear region of the cavity precisely provides the identification of dielectric samples in the range of 1 to 20 within $\\sim$ 99 % of accuracy using the standard cavity formulation. On the other hand, the proposed machine learning approach works effectively in the non-linear region of the cavity and predicts the dielectric properties accurately in the wide range dielectric constant starting from 20-45 with a typical error of 0.35 %. The non-linearity of the cavity output is modeled using the cascade feedforward architecture of Artificial Neural Network (ANN) for multiinput variables extracted from the simulations. The model is trained using a well-known Bayesian regularization algorithm with an adequate number of samples and subsequently tested over a large sample of novel test input. The mean square error of test samples in the range of 10-4 and correlation coefficient (R) near 1 demonstrates the effectiveness of the approach in dielectric testing using the proposed cavity.","PeriodicalId":226787,"journal":{"name":"2021 IEEE MTT-S International Microwave and RF Conference (IMARC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Tackling Non-linearity in Cavity Perturbation using Machine Learning Approach\",\"authors\":\"Z. Akhter, A. Shamim, A. Khusro, A. Jha\",\"doi\":\"10.1109/imarc49196.2021.9714577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a unique design of a cylindrical cavity to identify the dielectric materials with high resolution using the supervised machine learning algorithm. The mountable design of an aluminum-based cylindrical cavity records a quality factor of more than 9000 and provides an easy assembly of samples to be tested. The linear region of the cavity precisely provides the identification of dielectric samples in the range of 1 to 20 within $\\\\sim$ 99 % of accuracy using the standard cavity formulation. On the other hand, the proposed machine learning approach works effectively in the non-linear region of the cavity and predicts the dielectric properties accurately in the wide range dielectric constant starting from 20-45 with a typical error of 0.35 %. The non-linearity of the cavity output is modeled using the cascade feedforward architecture of Artificial Neural Network (ANN) for multiinput variables extracted from the simulations. The model is trained using a well-known Bayesian regularization algorithm with an adequate number of samples and subsequently tested over a large sample of novel test input. The mean square error of test samples in the range of 10-4 and correlation coefficient (R) near 1 demonstrates the effectiveness of the approach in dielectric testing using the proposed cavity.\",\"PeriodicalId\":226787,\"journal\":{\"name\":\"2021 IEEE MTT-S International Microwave and RF Conference (IMARC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE MTT-S International Microwave and RF Conference (IMARC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/imarc49196.2021.9714577\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE MTT-S International Microwave and RF Conference (IMARC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/imarc49196.2021.9714577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种独特的圆柱形腔设计,利用监督式机器学习算法对介质材料进行高分辨率识别。铝基圆柱形腔的安装设计记录了超过9000的质量因子,并提供了一个易于组装的样品进行测试。使用标准空腔配方,该空腔的线性区域精确地提供了介电样品在1到20范围内的识别,准确度在$\sim$ 99%。另一方面,所提出的机器学习方法在空腔的非线性区域有效地工作,并且在介电常数从20-45开始的宽范围内准确地预测介电特性,典型误差为0.35%。利用人工神经网络(ANN)的级联前馈结构对仿真中提取的多输入变量进行非线性建模。该模型使用著名的贝叶斯正则化算法进行训练,并具有足够数量的样本,随后在新测试输入的大样本上进行测试。测试样品的均方误差在10-4范围内,相关系数(R)接近1,证明了该方法在使用该空腔进行介电测试中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tackling Non-linearity in Cavity Perturbation using Machine Learning Approach
This paper presents a unique design of a cylindrical cavity to identify the dielectric materials with high resolution using the supervised machine learning algorithm. The mountable design of an aluminum-based cylindrical cavity records a quality factor of more than 9000 and provides an easy assembly of samples to be tested. The linear region of the cavity precisely provides the identification of dielectric samples in the range of 1 to 20 within $\sim$ 99 % of accuracy using the standard cavity formulation. On the other hand, the proposed machine learning approach works effectively in the non-linear region of the cavity and predicts the dielectric properties accurately in the wide range dielectric constant starting from 20-45 with a typical error of 0.35 %. The non-linearity of the cavity output is modeled using the cascade feedforward architecture of Artificial Neural Network (ANN) for multiinput variables extracted from the simulations. The model is trained using a well-known Bayesian regularization algorithm with an adequate number of samples and subsequently tested over a large sample of novel test input. The mean square error of test samples in the range of 10-4 and correlation coefficient (R) near 1 demonstrates the effectiveness of the approach in dielectric testing using the proposed cavity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信