Lakshadweep群岛的鱼类建模和贝叶斯学习

Abhinav Gupta, P. Haley, D. Subramani, Pierre FJ Lermusiaux
{"title":"Lakshadweep群岛的鱼类建模和贝叶斯学习","authors":"Abhinav Gupta, P. Haley, D. Subramani, Pierre FJ Lermusiaux","doi":"10.23919/OCEANS40490.2019.8962892","DOIUrl":null,"url":null,"abstract":"In fish modeling, a significant amount of uncertainty exists in the parameter values, parameterizations, functional form of model equations, and even the state variables themselves. This is due to the complexity and lack of understanding of the processes involved, as well as the measurement sparsity. These challenges motivate the present proof-of-concept study to simultaneously learn and estimate the state variables, parameters, and model equations from sparse observations. We employ a novel dynamics-based Bayesian learning framework for high-dimensional, coupled fish-biogeochemical-physical partial-differential equations (PDEs) models, allowing the simultaneous inference of the augmented state variables and parameters. After reviewing the status of ecosystem modeling in the coastal oceans, we first complete a series of PDE-based learning experiments that showcase capabilities for fish-biogeochemical-physical model equations and parameters, using nonhydrostatic Boussinesq flows past a seamount. We then showcase realistic ocean primitive-equation simulations and analyses, using fish catch data for the Lakshadweep islands in India. These modeling and learning efforts could improve fisheries management from a standpoint of sustainability and efficiency.","PeriodicalId":208102,"journal":{"name":"OCEANS 2019 MTS/IEEE SEATTLE","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Fish Modeling and Bayesian Learning for the Lakshadweep Islands\",\"authors\":\"Abhinav Gupta, P. Haley, D. Subramani, Pierre FJ Lermusiaux\",\"doi\":\"10.23919/OCEANS40490.2019.8962892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In fish modeling, a significant amount of uncertainty exists in the parameter values, parameterizations, functional form of model equations, and even the state variables themselves. This is due to the complexity and lack of understanding of the processes involved, as well as the measurement sparsity. These challenges motivate the present proof-of-concept study to simultaneously learn and estimate the state variables, parameters, and model equations from sparse observations. We employ a novel dynamics-based Bayesian learning framework for high-dimensional, coupled fish-biogeochemical-physical partial-differential equations (PDEs) models, allowing the simultaneous inference of the augmented state variables and parameters. After reviewing the status of ecosystem modeling in the coastal oceans, we first complete a series of PDE-based learning experiments that showcase capabilities for fish-biogeochemical-physical model equations and parameters, using nonhydrostatic Boussinesq flows past a seamount. We then showcase realistic ocean primitive-equation simulations and analyses, using fish catch data for the Lakshadweep islands in India. These modeling and learning efforts could improve fisheries management from a standpoint of sustainability and efficiency.\",\"PeriodicalId\":208102,\"journal\":{\"name\":\"OCEANS 2019 MTS/IEEE SEATTLE\",\"volume\":\"119 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OCEANS 2019 MTS/IEEE SEATTLE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/OCEANS40490.2019.8962892\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OCEANS 2019 MTS/IEEE SEATTLE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/OCEANS40490.2019.8962892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

在鱼类建模中,大量的不确定性存在于参数值、参数化、模型方程的函数形式,甚至状态变量本身。这是由于对所涉及的过程的复杂性和缺乏理解,以及测量的稀疏性。这些挑战促使当前的概念验证研究同时从稀疏观测中学习和估计状态变量、参数和模型方程。我们采用了一种新的基于动态的贝叶斯学习框架,用于高维,耦合鱼-生物地球化学-物理偏微分方程(PDEs)模型,允许同时推断增强的状态变量和参数。在回顾了沿海海洋生态系统建模的现状之后,我们首先完成了一系列基于pde的学习实验,展示了鱼类-生物地球化学-物理模型方程和参数的能力,使用经过海底山的非流体静力Boussinesq流。然后,我们展示了现实的海洋原始方程模拟和分析,使用印度拉克沙群岛的渔获数据。从可持续性和效率的角度来看,这些建模和学习工作可以改善渔业管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fish Modeling and Bayesian Learning for the Lakshadweep Islands
In fish modeling, a significant amount of uncertainty exists in the parameter values, parameterizations, functional form of model equations, and even the state variables themselves. This is due to the complexity and lack of understanding of the processes involved, as well as the measurement sparsity. These challenges motivate the present proof-of-concept study to simultaneously learn and estimate the state variables, parameters, and model equations from sparse observations. We employ a novel dynamics-based Bayesian learning framework for high-dimensional, coupled fish-biogeochemical-physical partial-differential equations (PDEs) models, allowing the simultaneous inference of the augmented state variables and parameters. After reviewing the status of ecosystem modeling in the coastal oceans, we first complete a series of PDE-based learning experiments that showcase capabilities for fish-biogeochemical-physical model equations and parameters, using nonhydrostatic Boussinesq flows past a seamount. We then showcase realistic ocean primitive-equation simulations and analyses, using fish catch data for the Lakshadweep islands in India. These modeling and learning efforts could improve fisheries management from a standpoint of sustainability and efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信