基于视觉的自动驾驶车辆实时行人检测

Liu Xin, Dai Bin, He Hangen
{"title":"基于视觉的自动驾驶车辆实时行人检测","authors":"Liu Xin, Dai Bin, He Hangen","doi":"10.1109/ICVES.2007.4456404","DOIUrl":null,"url":null,"abstract":"TMs paper presents a real-time single-frame pedestrian detection approach. Combining efficient interesting regions selection and proper SVM classifier, the method is applicable to the autonomous vehicles running on urban roads. Experiment results with test dataset extracted from real driving on urban roads are presented to illustrate the performance of this approach.","PeriodicalId":202772,"journal":{"name":"2007 IEEE International Conference on Vehicular Electronics and Safety","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Vision-based real-time pedestrian detection for autonomous vehicle\",\"authors\":\"Liu Xin, Dai Bin, He Hangen\",\"doi\":\"10.1109/ICVES.2007.4456404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"TMs paper presents a real-time single-frame pedestrian detection approach. Combining efficient interesting regions selection and proper SVM classifier, the method is applicable to the autonomous vehicles running on urban roads. Experiment results with test dataset extracted from real driving on urban roads are presented to illustrate the performance of this approach.\",\"PeriodicalId\":202772,\"journal\":{\"name\":\"2007 IEEE International Conference on Vehicular Electronics and Safety\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Conference on Vehicular Electronics and Safety\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICVES.2007.4456404\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Conference on Vehicular Electronics and Safety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVES.2007.4456404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文提出了一种实时的单帧行人检测方法。该方法结合高效的兴趣区域选择和合适的SVM分类器,适用于在城市道路上运行的自动驾驶车辆。用城市道路上真实驾驶的测试数据集进行了实验,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vision-based real-time pedestrian detection for autonomous vehicle
TMs paper presents a real-time single-frame pedestrian detection approach. Combining efficient interesting regions selection and proper SVM classifier, the method is applicable to the autonomous vehicles running on urban roads. Experiment results with test dataset extracted from real driving on urban roads are presented to illustrate the performance of this approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信