双机系统中最大作业延迟和流程时间最小化算法

T. Sen, B. N. Borah, O. Foong
{"title":"双机系统中最大作业延迟和流程时间最小化算法","authors":"T. Sen, B. N. Borah, O. Foong","doi":"10.1109/SSST.1992.712258","DOIUrl":null,"url":null,"abstract":"This paper considers the dual criteria of minimizing flowtime and maximum lateness of jobs in the two-machine flowshop system. We discover the conditions that determine which of a pair of adjacent jobs in a sequence should precede the other to minimize either of the two objective functions. We also present a Branch-and-Bound solution procedure to arrive at an optimal solution.","PeriodicalId":359363,"journal":{"name":"The 24th Southeastern Symposium on and The 3rd Annual Symposium on Communications, Signal Processing Expert Systems, and ASIC VLSI Design System Theory","volume":"165 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Algorithm to Minimize Maximum Job Lateness and Flowtime in Two-Machine System\",\"authors\":\"T. Sen, B. N. Borah, O. Foong\",\"doi\":\"10.1109/SSST.1992.712258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers the dual criteria of minimizing flowtime and maximum lateness of jobs in the two-machine flowshop system. We discover the conditions that determine which of a pair of adjacent jobs in a sequence should precede the other to minimize either of the two objective functions. We also present a Branch-and-Bound solution procedure to arrive at an optimal solution.\",\"PeriodicalId\":359363,\"journal\":{\"name\":\"The 24th Southeastern Symposium on and The 3rd Annual Symposium on Communications, Signal Processing Expert Systems, and ASIC VLSI Design System Theory\",\"volume\":\"165 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 24th Southeastern Symposium on and The 3rd Annual Symposium on Communications, Signal Processing Expert Systems, and ASIC VLSI Design System Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSST.1992.712258\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 24th Southeastern Symposium on and The 3rd Annual Symposium on Communications, Signal Processing Expert Systems, and ASIC VLSI Design System Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSST.1992.712258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了双机流水车间系统中作业时间最小和作业延迟最大的双重准则。我们发现了决定序列中一对相邻作业中哪一个应该先于另一个以最小化两个目标函数中的任何一个的条件。我们还提出了一个分支定界解的方法来得到最优解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Algorithm to Minimize Maximum Job Lateness and Flowtime in Two-Machine System
This paper considers the dual criteria of minimizing flowtime and maximum lateness of jobs in the two-machine flowshop system. We discover the conditions that determine which of a pair of adjacent jobs in a sequence should precede the other to minimize either of the two objective functions. We also present a Branch-and-Bound solution procedure to arrive at an optimal solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信